精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DFMN分别是DCDF的中点,连接MN.AB=7BE=5,则MN=_______.

【答案】

【解析】

连接FC,根据三角形中位线定理可得FC=2MN,继而根据四边形ABCD,四边形EFGB是正方形,推导得出GBC三点共线,然后再根据勾股定理可求得FC的长,继而可求得答案.

连接FC∵MN分别是DCDF的中点,

∴FC=2MN

四边形ABCD,四边形EFGB是正方形,

∴∠FGB=90°,∠ABG=∠ABC=90°FG=BE=5BC=AB=7

∴∠GBC=∠ABG+ABC=180°

GBC三点共线,

GC=GB+BC=5+7=12

∴FC==13

∴MN=

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A20)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是(

A. 20 B. ﹣11 C. ﹣21 D. ﹣1﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE90°,点ADE在同一直线上,CM为△DCEDE边上的高,连接BE

1)求∠AEB的度数;

2)线段CMAEBE之间存在怎样的数量关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区改善生态环境,实行生活垃圾的分类处理,将生活垃圾分成三类:厨房垃圾、可回收垃圾和其他垃圾,分别记为m,n,p,并且设置了相应的垃圾箱,“厨房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C.

(1)若将三类垃圾随机投入三类垃圾箱,请用画树状图的方法求垃圾投放正确的概率;

(2)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区三类垃圾箱中总共1 000吨生活垃圾,数据统计如下(单位:吨):

A

B

C

m

400

100

100

n

30

240

30

p

20

20

60

请根据以上信息,试估计“厨房垃圾”投放正确的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是(  )

A. c>﹣1 B. b>0 C. 2a+b≠0 D. 9a+c>3b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点BF为圆心,以大于 BF的长为半径画弧交于点G,做射线AGBC与点E,若BF=12AB=10,则AE的长为( ).

A.17B.16C.15D.14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分8分)某厂制作甲、乙两种环保包装盒。已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料。

1)求制作每个甲盒、乙盒各用多少材料?

2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,作斜边AB上中线CD,得到第1个三角形ACD于点E,作斜边DB上中线EF,得到第2个三角形DEF;依次作下去则第1个三角形的面积等于______,第n个三角形的面积等于______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,以AB为直径的⊙OBC于点D,过点DEFAC于点E,交AB的延长线于点F

1)判断直线DE与⊙O的位置关系,并说明理由;

2)如果AB=5BC=6,求DE的长.

查看答案和解析>>

同步练习册答案