精英家教网 > 初中数学 > 题目详情
17.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=$\frac{k}{x}$(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=$\frac{24}{5}$.

分析 根据所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出B的横纵坐标的积即是反比例函数的比例系数.

解答 解:∵四边形OCBA是矩形,
∴AB=OC,OA=BC,
设B点的坐标为(a,b),
∵BD=3AD,
∴D($\frac{a}{4}$,b),
∵点D,E在反比例函数的图象上,
∴$\frac{ab}{4}$=k,∴E(a,$\frac{k}{a}$),
∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-$\frac{1}{2}$•$\frac{ab}{4}$-$\frac{1}{2}$•$\frac{ab}{4}$-$\frac{1}{2}$•$\frac{3a}{4}$•(b-$\frac{k}{a}$)=9,
∴ab-$\frac{ab}{4}$-$\frac{3ab}{8}$+$\frac{3k}{8}$=9,
∴ab+k=24,
∵$\frac{ab}{4}$=k,
∴k=$\frac{24}{5}$,
故答案为:$\frac{24}{5}$.

点评 此题考查了反比例函数系数k的几何意义,利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.解下列分式方程:
(1)$\frac{x}{x-2}$=$\frac{x-2}{x+2}$      
(2)$\frac{4x+10}{3x-6}$-$\frac{5x-4}{x-2}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在Rt△ABC中,∠C=90°,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合.若CD=6,BD=10,求AC长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程
(1)$\frac{x}{2}$-$\frac{5x+12}{6}$=1+$\frac{2x-4}{3}$
(2)$\frac{1}{2}${$\frac{1}{3}$[$\frac{1}{4}$($\frac{1}{5}$x-1)-6]+4}=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列二次根式中,与$\sqrt{3}$能合并的是(  )
A.$\sqrt{24}$B.$\sqrt{27}$C.$\sqrt{96}$D.$\sqrt{0.5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.求下列各式中的x
(1)16(x-2)2=81
(2)27(x+1)3+125=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知不等式$\frac{1+x}{2}$<$\frac{2x-1}{3}$的最小整数解是方程3(x-a)-1=8的解,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:(2$\sqrt{3}$-1)0+|-6|-8×4-1+$\sqrt{25}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.若关于x的一元二次方程m2x2-(2m-1)x-1=0有两个实数根,则m的取值范围是(  )
A.m$<\frac{1}{4}$B.m$≤\frac{1}{4}$C.m$≥\frac{1}{4}$D.m$≤\frac{1}{4}$且m≠0

查看答案和解析>>

同步练习册答案