精英家教网 > 初中数学 > 题目详情
10.有一座抛物线形拱桥,校下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米.
(1)在如图的坐标系中,求抛物线的表达式;
(2)若洪水到来是水位以0.2米/时的速度上升,从正常水位开始,再过几小时能到达桥面?

分析 (1)设所求抛物线的解析式为y=ax2.把D(5,b),则B(10,b-3)代入解方程组即可.
(2)根据时间=路程÷速度计算即可.

解答 解:(1)设所求抛物线的解析式为y=ax2
设D(5,b),则B(10,b-3),
把D、B的坐标分别代入y=ax2得:$\left\{\begin{array}{l}{25a=b}\\{100a=b-3}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-\frac{1}{25}}\\{b=-1}\end{array}\right.$,
∴抛物线的解析式为y=-$\frac{1}{25}$x2; 

(2)∵b=-1,∴拱桥顶O到CD的距离为1,
∴(1+3)÷0.2=20(小时),
所以再过20小时到达拱桥顶.

点评 本题考查二次函数的应用,解题的关键是学会构建二次函数,学会利用二次函数的性质解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,-3),E(0,-4).
(1)写出D,C,B关于y轴对称点F,G,H的坐标,并画出F,G,H点.
(2)顺次平滑地连接A,B,C,D,E,F,G,H,A各点.观察图形它是轴对称图形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.函数y=$\frac{6}{x}$中,若x>1,则y的取值范围为0<y<6,若x<3,则y的取值范围为y<0或y>2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.3.67×102016的整数位数是(  )
A.2013B.2014C.2016D.2017

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知$\frac{1}{z}$+$\frac{1}{x+y}$=4,$\frac{1}{y}$+$\frac{1}{z+x}$=3,$\frac{1}{x}$+$\frac{1}{y+z}$=2,则x+5y+7z的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,是一个有理数混合运算程序的流程图,请根据这个程序回答问题:当输入的x为-7时,最后输出的结果y是多少?(写出计算过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.
(1)建立如图所示的坐标系,求抛物线的解析式;
(2)一艘装满物资的小船,露出水面部分的高为0.8m、宽为4m(横断面如图所示).若暴雨后,水位达到警戒线CD,此时这艘船能从这座拱桥下通过吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.岳池铁路养护小组乘车沿东西向铁路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):
+12,-14,+13,-10,-8,+7,-16,+8.
(1)问B地在A地的哪个方向?它们相距多少千米?
(2)若汽车行驶每千米耗油5升,求该天共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,PA、PB切⊙O于点A、B,CD是⊙O的切线,交PA、PB于C、D两点,△PCD的周长是36,则AP的长为(  )
A.12B.18C.24D.9

查看答案和解析>>

同步练习册答案