精英家教网 > 初中数学 > 题目详情
10.如图,?ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.
求证:四边形AECF是平行四边形.

分析 平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为四边形ABCD是平行四边形,可证OF=OE,OA=OC,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决.

解答 证明:∵四边形ABCD是平行四边形,
∴OD=OB,OA=OC,
∵AB∥CD,
∴∠E=∠F,
∴在△AOE和△COF中,
$\left\{\begin{array}{l}{∠E=∠F}\\{∠AOE=∠COF}\\{AO=CO}\end{array}\right.$,
∴△AOE≌△COF(AAS),
∴OF=OE,
∴四边形AECF是平行四边形.

点评 此题考查平行四边形的判定,关键是根据平行四边形的判定方法解答,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.在实数$\frac{3}{2}$,0,-1,$\sqrt{3}$,最大的数是(  )
A.$\frac{3}{2}$B.0C.-1D.$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).
(1)请画出△ABC关于x轴对称的△A1B1C1
(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A2,B2,C2,请画出△A2B2C2
(3)求△A1B1C1与△A2B2C2的面积相比,即S${\;}_{△{A}_{1}{B}_{1}{C}_{1}}$:S${\;}_{△{A}_{2}{B}_{2}{C}_{2}}$=1:4(不写解答过程,直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.有一张地图,有A、B、C三地,但地图被墨迹污染,C地具体位置看不清楚了,但知道C地在A地的北偏东30°,在B地的南偏东45°,你能帮他确定C地的位置吗?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.平行四边形的两条对角线长和一条边的长可以依次是(  )
A.4、4、4B.6、4、4C.6、4、6D.3、4、5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列各数中,是方程x2=4x-3的解的是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G,给出以下五个结论:
①∠B=∠C=45°;
②AE=CF,
③AP=EF,
④△EPF是等腰直角三角形,
⑤四边形AEPF的面积是△ABC面积的一半.
其中正确的结论是(  )
A.只有①B.①②④C.①②③④D.①②④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.$\left\{\begin{array}{l}{x+y=2}\\{y+z=4}\\{z+x=6}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=2}\\{y=0}\\{z=4}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:
(1)$\sqrt{18}$-$\sqrt{32}$+$\sqrt{2}$
(2)($\sqrt{5}+2$)($\sqrt{5}-2$)-($\sqrt{3}$)2

查看答案和解析>>

同步练习册答案