精英家教网 > 初中数学 > 题目详情
如图(1),点E是正方形ABCD边AB上的一动点(不与A、B重合),四边形EFGB也是正方形.正方形BEFG、ABCD的边长分别为a、b,且(a<b),设△AFC的面积为S.
(1)请证明S为定值;
(2)将图(1)中正方形BEFG绕点B顺时针转动45°,如图(2),求S值;
(3)当点E处在AB中点(即b=2a时),将正方形BEFG绕点B旋转任意角度,如图(3),请直接写出旋转过程中S的最大值为:
4a2(或b2
4a2(或b2

分析:(1)连接FB,根据已知可得到△ABC与△AFC是同底等高的三角形,由已知可求得△ABC的面积为大正方形面积的一半,从而不难求得S的值.
(2)根据图形的关系,可得BF的长,根据三角形面积公式,可得△AFC的面积;
(3)分析可得:当F点到AC的距离取得最大、最小值时,S△AFC取得最大、最小值.
解答:(1)证明:如图(1),连接FB.
∵四边形EFGB和四边形ABCD都是正方形,
∴∠FBA=∠BAC=45°,∴FB∥AC,
∴△AFC与△ABC是同底等高的三角形.
∴S△AFC=S△ABC
∵2S△ABC=S□ABCD,S□ABCD=b2
∴S=
1
2
b2.即S为定值;

(2)∵点F在AB上,
∴BF2=a2+a2,即BF=
2
a,
∴AF=b-
2
a,
∴S△AFC=
1
2
AF•BC=
1
2
(b-
2
a)b=
1
2
b2-
2
2
ab;

(3)正方形EFGB在绕B点旋转的过程中,F点的轨迹是以点B为圆心,BF为半径的圆.
当b=2a时,存在最大值,不存在最小值.
∴S△AFC的最大值=
1
2
×
2
b×(
1
2
2
b+
2
a)=
2
a×2
2
a=4a2(或b2).
故填:4a2(或b2).
点评:本题考查了旋转的性质、勾股定理及正方形的性质,解答本题要充分利用正方形的特殊性质,注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),将抛物线C1绕点B旋转180°后得到抛物线C2,求C2的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C3.抛物线C3的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标?精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知点P是线段AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD.
(1)求证:△APD≌△CPB.
(2)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于90°),这种情况“△APD≌△CPB”的结论还成立吗?请说明理由.
(3)如图1,设∠AQC=α,求α的度数.

查看答案和解析>>

科目:初中数学 来源:第23章《二次函数与反比例函数》中考题集(31):23.5 二次函数的应用(解析版) 题型:解答题

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:2011年天津市津南区中考数学一模试卷(解析版) 题型:解答题

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.

查看答案和解析>>

同步练习册答案