精英家教网 > 初中数学 > 题目详情
如图,已知一次函数y=k1x+b的图象与反比例函数y=
k2
x
的图象交于A(1,-3),B(3,m)两点,连接OA、OB.
(1)求两个函数的解析式;
(2)求△ABO的面积.
(1)把A(1,-3)代入y=
k2
x
中,
∴k2=-3,
∴y=-
3
x
,把B(3,m)代入求出的反比例函数解析式中得,m=-1,
∴B(3,-1),根据待定系数法得一次函数解析式为y=x-4.

(2)当x=0时,y=-4.当y=0时,x=4,所以直线AB与坐标轴的交点坐标为C(4,0),D(0,-4)
∴S△OAB=S△AOC-S△BOC=4.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,正比例函数的图象与反比例函数的图象都经过点P(2,3),点D是正比例函数图象上的一点,过点D分别作x轴、y轴的垂线,垂足分别为点C和点Q,DC、DQ分别交反比例函数的图象于点F和点A,过点A作x轴的垂线,垂足为B,AB交正比例函数的图象于点E.
(1)当点D的纵坐标为9时,求:点E、F的坐标.
(2)当点D在线段OP的延长线上运动时,试猜想AE与DF的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:
①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为y=
20
x
(x>0);④sin∠COA=
4
5

其中正确的结论有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知A(m+3,2)和B(3,
m
3
)
是同一个反比例函数图象上的两个点.
(1)求m的值;(2)作出这个反比例函数的图象;(3)将A,B两点标在函数图象上.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y1=2x与双曲线y2=
8
x
相交于点A、E.另一直线y3=x+b与双曲线交于点A、B,与x、y轴分别交于点C、D.直线EB交x轴于点F.
(1)求A、B两点的坐标,并比较线段OA、OB的长短;
(2)由函数图象直接写出函数y2>y3>y1的自变量x的取值范围;
(3)求证:△COD△CBF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图在反比例函数y=-
2
x
和y=
3
x
的图象上分别有A、B两点,若ABx轴且OA⊥OB,则
OA
OB
=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点P的坐标为(2,
3
2
),过点P作x轴的平行线交y轴于点A,交双曲线y=
k
x
(x>0)于点N;作PM⊥AN交双曲线y=
k
x
(x>0)于点M,连接AM.已知PN=4.
(1)求k的值.(2)求△APM的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

反比例函数y=
k
x
(k≠0)的图象经过点(-2,3),则k=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A是函数y=
1
x
的图象上的点,点B,C的坐标分别为B(-
2
,-
2
),C(
2
2
).试利用性质:“函数y=
1
x
的图象上任意一点A都满足|AB-AC|=2
2
”求解下面问题:作∠BAC的内角平分线AE,过B作AE的垂线交AE于F,已知当点A在函数y=
1
x
的图象上运动时,点F总在一条曲线上运动,则这条曲线为(  )
A.直线B.抛物线
C.圆D.反比例函数的曲线

查看答案和解析>>

同步练习册答案