精英家教网 > 初中数学 > 题目详情
11.如图,已知函数y=-2x+3的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M.在X轴上有一点P(a,0)(其中a>1),过点P作x轴的垂线,分别交函数y=x和y=-2x+3的图象于点C、D.若CD=3,求a的值.

分析 表示出C点坐标和D点坐标后列出方程,然后解方程即可.

解答 解:∵CD=3,
∵PC⊥x轴,
∴C点坐标为(a,a),D点坐标为(a,-2a+3)
∴a-(-2a+3)=3,
∴a=2.

点评 本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.在数学课上,老师提出如下问题:
如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.
小明的折叠方法如下:
如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D; (2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.
老师说:“小明的作法正确.”
请回答:小明这样折叠的依据是CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知两个不等实数a,b满足a2+18a-19=0,b2+18b-19=0.若一次函数的图象经过点A(a,a2),B(b,b2),则这个一次函数的解析式是y=-18x+19.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:如图,梯形ABCD,AB∥CD,以AC、AD为边向外作?ACED,联结BE,点F是BE的中点,联结CF.求证:CF∥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,在直角坐标系xOy中,已知正三角形ABC的边长为2,点A从点O开始沿着x轴的正方向移动,点B在∠xOy的平分线上移动.则点C到原点的最大距离是(  )
A.1+$\sqrt{2}$+$\sqrt{3}$B.$\sqrt{2}$+$\sqrt{6}$C.2+$\sqrt{3}$D.1+2$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知二次函数的图象过点(-2,0),(6,0),图象最低点的纵坐标为-$\frac{9}{2}$.求这个二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.一次函数y=ax+b与y=ax+c(a>0,b≠c)在同一坐标系中的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若一个平行四边形的一条边长为9厘米,一条对角线长为6厘米,则它的另一条对角线长m的取值范围是12<m<24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.请根据如图所示的已知条件,求出抛物线解析式,并写出顶点坐标.

查看答案和解析>>

同步练习册答案