精英家教网 > 初中数学 > 题目详情
△ABC是等边三角形,点D是射线上BC上的一个动点(点D不与点B,C重合,△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB,AC于点F,G,连接BE.
(1)如图1所示,当点D在线段BC上时:①求证:△AEB≌△ADC;②探究四边形BCGE是哪种特殊的四边形,并说明理由.
(2)探究四边形BCGE是哪种特殊的四边形,并说明理由.如图2所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立.
分析:(1)根据等边三角形的性质可得AB=AC,AE=AD,∠BAC=∠EAD=60°,然后求出∠BAE=∠CAD,再利用“边角边”证明△AEB和△ADC全等;根据全等三角形对应角相等可得∠ABE=∠C=60°,再求出∠CBE+∠C=180°,根据同旁内角互补,两直线平行判断出BE∥CG,然后根据两组对边平行的四边形是平行四边形解答;
(2)根据(1)的思路解答即可.
解答:(1)①证明:∵△ABC,△ADE是等边三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=60°,
∴∠BAC-∠BAD=∠EAD-∠BAD,
即∠BAE=∠CAD,
∵在△AEB和△ADC中,
AB=AC
∠BAE=∠CAD
AE=AD

∴△AEB≌△ADC(SAS);

②四边形BCGE是平行四边形.理由如下:
∵△AEB≌△ADC,
∴∠ABE=∠C=60°,
∴∠CBE+∠C=∠ABE+∠ABC+∠C=∠C+∠ABC+∠C=60°+60°+60°=180°,
∴BE∥CG,
又∵EG∥BC,
∴四边形BCGE是平行四边形;

(2)①②都成立.
①的证明与(1)中相同,
②的证明如下:
∵△AEB≌△ADC,
∴∠AEB=∠ADC,
∵BD∥FG,
∴∠BDE=∠DEG,
∴∠AEB+∠DEG=∠ADC+∠BDE=∠ADE=60°,
∴∠BEG+∠G=(∠AEB+∠DEG)+∠AED+∠G=60°+60°+60°=180°,
∴BE∥CG,
又∵EG∥BC,
∴四边形BCGE是平行四边形.
点评:本题考查了平行四边形的判定,等边三角形的判定与性质,全等三角形的判定与性质,平行线的判定,综合性较强,难度较大,求出三角形全等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知a、b、c是△ABC的三条边长,若x=-1为关于x的一元二次方程(c-b)x2-2(b-a)x+(a-b)=0的根.
(1)△ABC是等腰三角形吗?△ABC是等边三角形吗?请写出你的结论并证明;
(2)若代数式子
a-2
+
2-a
有意义,且b为方程y2-8y+15=0的根,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC是等边三角形,D、E分别是BC、CA上的点,且BD=CE.
(1)求证:AD=BE;(2)求∠AFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,
(1)用直尺和圆规作边BC的高线AD交BC于点D(保留作图痕迹,不要求写作法);
(2)若△ABC的边长为2,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•裕华区二模)已知,如图△ABC是等边三角形,将一块含30°角的直角三角板DEF如图放置,让△ABC在BC所在的直线l上向左平移.当点B与点E重合时,点A恰好落在三角板的斜边DF上的M点,点C在N点位置上(假定AB、AC与三角板斜边的交点为G、H)
问:(1)在△ABC平移过程中,通过测量CH、CF的长度,猜想CH、CF满足的数量关系;
(2)在△ABC平移过程中,通过测量BE、AH的长度,猜想BE.AH满足的数量关系;
(3)证明(2)中你的猜想.(证明不得含有图中未标示的字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,AB=AC,若要使△ABC是等边三角形,那么需添加一个条件:
AB=BC
AB=BC
∠A=60°
∠A=60°
(从不同角度填空).

查看答案和解析>>

同步练习册答案