精英家教网 > 初中数学 > 题目详情
如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.
(1)证明:DE为⊙O的切线;
(2)连接OE,若BC=4,求△OEC的面积.
考点:切线的判定,等腰三角形的性质,三角形中位线定理,圆周角定理
专题:几何综合题
分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;
(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.
解答:(1)证明:连接OD,CD,
∵BC为⊙O直径,
∴∠BDC=90°,
即CD⊥AB,
∵△ABC是等腰三角形,
∴AD=BD,
∵OB=OC,
∴OD是△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∵D点在⊙O上,
∴DE为⊙O的切线;

(2)解:∵∠A=∠B=30°,BC=4,
∴CD=
1
2
BC=2,BD=BC•cos30°=2
3

∴AD=BD=2
3
,AB=2BD=4
3

∴S△ABC=
1
2
AB•CD=
1
2
×4
3
×2=4
3

∵DE⊥AC,
∴DE=
1
2
AD=
1
2
×2
3
=
3

AE=AD•cos30°=3,
∴S△ODE=
1
2
OD•DE=
1
2
×2×
3
=
3

S△ADE=
1
2
AE•DE=
1
2
×
3
×3=
3
2
3

∵S△BOD=
1
2
S△BCD=
1
2
×
1
2
S△ABC=
1
4
×4
3
=
3

∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4
3
-
3
-
3
-
3
2
3
=
3
2
点评:此题考查了切线的判定、三角形中位线的性质、等腰三角形的性质、圆周角定理以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是(  )
A、平均数B、标准差
C、中位数D、众数

查看答案和解析>>

科目:初中数学 来源: 题型:

先化简,再求值:(a+2b)2+(b+a)(b-a),其中a=-1,b=2.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.
(1)求∠D的度数;
(2)若CD=2,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.
(1)求普通列车的行驶路程;
(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),在平面直角坐标系中,⊙O1与x轴相切于点A(3,0),与y轴相交于B、C两点,且BC=8,连接AB、O1B.

(1)AB的长=
 

(2)求证:∠ABO1=∠ABO;
(3)如图(2),过A、B两点作⊙O2与y轴的负半轴交于点M,与O1B的延长线交于点N,连接AM、MN,当⊙O2的大小变化时,∠ABO1与∠AMN始终相等,问BM-BN的值是否变化,为什么?如果不变,请求出BM-BN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

我市启动了第二届“美丽港城,美在阅读”全民阅读活动,为了解市民每天的阅读时间情况,随机抽取了部分市民进行调查,根据调查结果绘制如下尚不完整的频数分布表:
阅读时间
x(min)
0≤x<3030≤x<6060≤x<90x≥90合计
频数450400
 
50
 
频率
 
0.40.1
 
1
(1)补全表格;
(2)将每天阅读时间不低于60min的市民称为“阅读爱好者”,若我市约有500万人,请估计我市能称为“阅读爱好者”的市民约有多少万人?

查看答案和解析>>

科目:初中数学 来源: 题型:

商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是
 

(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

1
27
的立方根是
 

查看答案和解析>>

同步练习册答案