精英家教网 > 初中数学 > 题目详情
(2012•温州)如图,△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.
分析:根据平移的性质可得CF=AD=10cm,DF=AC,再在Rt△ABC中利用勾股定理求出AC的长为10,就可以根据四条边都相等的四边形是菱形得到结论.
解答:证明:由平移变换的性质得:
CF=AD=10cm,DF=AC,
∵∠B=90°,AB=6cm,BC=8cm,
∴AC=
AB2+CB2
=
36+64
=10,
∴AC=DF=AD=CF=10cm,
∴四边形ACFD是菱形.
点评:此题主要考查了平移的性质,菱形的判定,关键是掌握平移的性质:各组对应点的线段平行且相等;菱形的判定:四条边都相等的四边形是菱形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•温州)如图,经过原点的抛物线y=-x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.
(1)当m=3时,求点A的坐标及BC的长;
(2)当m>1时,连接CA,问m为何值时CA⊥CP?
(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•温州)如图,已知动点A在函数y=
4
x
(x>0)
的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于
13
3
13
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•温州)如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点,连接MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•温州)如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.
(1)求证:AB是⊙O的切线;
(2)若CD的弦心距为1,BE=EO,求BD的长.

查看答案和解析>>

同步练习册答案