精英家教网 > 初中数学 > 题目详情
3.如图,在平面直角坐标系中,点A1、A2、A3,…是x轴正半轴上的点,且OA1=A1A2=A2A3=…,分别过点A1、A2、A3,…作y轴的平行线,交反比例函数y=$\frac{6}{x}$(x>0)的图象于点B1、B2、B3,…,则△AnBnBn+1的面积等于(  )
A.$\frac{3}{n}$B.$\frac{6}{n}$C.$\frac{3}{n+1}$D.$\frac{6}{n+1}$

分析 设设OA1=A1A2=A2A3=…a,根据反比例函数图象上点的坐标特征即可得出AnBn的值,再根据三角形的面积公式即可得出结论.

解答 解:设OA1=A1A2=A2A3=…a,
则A1B1=$\frac{6}{a}$,A2B2=$\frac{6}{2a}$,A3B3=$\frac{6}{3a}$,A4B4=$\frac{6}{4a}$,…,
∴AnBn=$\frac{6}{an}$,
∴${S}_{△{A}_{n}{B}_{n}{B}_{n+1}}$=$\frac{1}{2}$AnBn•BnBn+1=$\frac{3}{n}$.
故选A.

点评 本题考查了反比例函数图象上点的坐标特征以及三角形的面积,解题的关键是求出AnBn的值.本题属于基础题,难度不大,解决该题型题目时,根据边长的变化找出变化规律是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.一个正方体的体积为5cm3,则其棱长等于$\root{3}{5}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.已知,函数y=3x的图象经过点A(1,y1),点B(-2,y2),则(  )
A.y1>y2B.y1<y2
C.y1=y2D.y1、y2无法比较大小

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.若某数的平方根为a+4和a-10,则这个数是49.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图.由图可知,一周参加体育锻炼时间等于9小时的人数是(  )
A.5B.18C.10D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.把12°30′化成度的形式,则12°30′=12.5度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.对多项式a2-1因式分解,正确的是(  )
A.a2-1=(a+1)2B.a2-1=(a-1)2C.a2-1=(a-1)(a+1)D.a2-1=(1-a)(1+a)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解下列方程组(或不等式组)
(1)$\left\{\begin{array}{l}{3x+y=16}\\{5x-2y=23}\end{array}\right.$
(2)$\left\{\begin{array}{l}{\frac{x+1}{4}=\frac{y+2}{3}}\\{3(x-3)+2y=2}\end{array}\right.$
(3)解不等式$\frac{x-3}{4}$<6-$\frac{3-4x}{2}$,并把解集在数轴上表示出来.
(4)求不等式组$\left\{\begin{array}{l}{2x-3<9-x}\\{-\frac{3}{2}≤x-\frac{5}{2}}\end{array}\right.$的解集,并写出其所有整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.若点P(x-4,x+2)在第二、四象限的角平分线上,则P点到x轴的距离是3.

查看答案和解析>>

同步练习册答案