分析 根据三视图,可得几何体是圆锥,根据勾股定理,可得圆锥的母线长,根据扇形的面积公式,可得圆锥的侧面积,根据圆的面积公式,可得圆锥的底面积,可得答案.
解答 解:由三视图,得:![]()
OB=3cm,0A=4cm,
由勾股定理,得AB=$\sqrt{{3}^{2}+{4}^{2}}$=5cm,
圆锥的侧面积$\frac{1}{2}$×6π×5=15π(cm2),
圆锥的底面积π×($\frac{6}{2}$)2=9π(cm2),
圆锥的表面积15π+9π=24π(cm2),
故答案为:24πcm2
点评 本题考查了由三视图判断几何体,利用三视图得出圆锥是解题关键,注意圆锥的侧面积等于圆锥的底面周长与母线长乘积的一半.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -3$\frac{5}{6}$$<-3\frac{6}{7}$ | B. | -1.38>-1.384 | C. | 4.2>-$\frac{21}{5}$ | D. | -2>-3 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com