(1)
证明:∵点A是弧BC的中点,
∴∠ABC=∠ADB.
又∵∠BAE=∠DAB,
∴△ABE∽△ADB.…………………………………………………2分
(2)解
∵△ABE∽△ADB,
∴AB2=2×6=12.
∴AB=2
.
在Rt△ADB中,tan∠ADB=
………………………4分
(3)解:连接CD,
∵tan∠ADB=
,∴∠ADB=30°.
又∵A为
的中点,∴∠ABC=∠ADB=30°.
∵∠A=90°,∠ABD=60°.
∴∠DBC=30°.
∴CD=AB=2
,BE=DE=4.
又∵S△BDF=8
,
∴BF=8.
∴EF=4.
又∵∠FED=∠EBD+∠EDB=60°,
∴△EFD为等边三角形.
∴∠EDF=60°…………………………………………………………7分