精英家教网 > 初中数学 > 题目详情

如图,已知等边△ABC,BD⊥AC,E是BC延长线上的一点,且CE=数学公式AC.
(1)试说明△CDE为等腰三角形;
(2)DB与DE是否相等,请说明理由.

(1)证明:
∵等边三角形ABC,DB⊥AC,
∴∠ACB=60°,CD=AD=BC,∠DCB=30°,
∵CE=BC,
∴CE=CD,
∴△CDE为等腰三角形;
(2)DB与DE相等,
理由如下:
∵△ABC是等边三角形
∴AB=AC=BC∠ABC=∠ACB=60°,
∵BD⊥AC
∴∠CBD=∠ACB=30°,CD=AC,
∵CE=BC
∴CD=CE,
∴∠E=∠CDE,
∵∠ACB=∠E+∠CDE
∴∠E=∠ACB=30°,
∴∠CBD=∠E,
∴BD=ED.
分析:(1)由等边三角形ABC得到∠ABC为60°,又DB垂直AC,根据“三线合一”得到∠DBC为30°,根据直角三角形中,30°角所对的直角边等于斜边的一半得到CD等于BC的一半,由题中已知的CE等于AC的一半,等量代换可得CD=CE;
(2)由等边三角形ABC得到∠ACB为60°,又(1)得到CD=CE,根据“等边对等角”以及外角性质得到∠E=30°,又∠DBC为30°,故两角相等,再根据“等角对等边”得到BD=DE.
点评:此题考查了等边三角形的性质,直角三角形的性质以及等腰三角形的判定.利用等腰三角形的性质可以解决证明角、边的相等问题,尤其在证明其性质和判定中展示的转换意识,对同学们分析和解决问题能力的提高有非常重要的价值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知等边三角形ABC的中位线DE的长为1,
则下面结论中正确的是
 
.(填序号)精英家教网
①AB=2;②△DAE≌△BAC;
③△DAE的周长与△BAC的周长之比为1:3;
④△DAE的面积与△BAC的面积之比为1:4.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等边三角形ABC的边长为2,AD是BC边上的高.
(1)在△ABC内部作一个矩形EFGH(如图①),其中E、H分别在边AB、AC上,FG在边BC上.
①设矩形的一边FG=x,那么EF=
 
;(用含有x的代数式表示)精英家教网
②设矩形的面积为y,当x取何值时,y的值最大,最大值是多少?
(2)当矩形EFGH面积最大时,请在图②中画出此时点E的位置.(要求尺规作图,保留作图痕迹,并简要说明确定点E的方法)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄浦区二模)如图,已知等边△ABC的边长为1,设
n
=
AB
+
BC
,那么向量
n
的模|
n
|=
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•临夏州)[(1)-(3),10分]如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2)--(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2)--(5)中,h1、h2、h3、h之间的关系;(直接写出结论)
(2)证明图(2)所得结论;
(3)证明图(4)所得结论.
(4)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;图(4)与图(6)中的等式有何关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等边三角形ABC的边长为10,点P、Q分别为边AB、AC上的一个动点,点P从点B出发以1cm/s的速度向点A运动,点Q从点C出发以2cm/s的速度向点A运动,连接PQ,以Q为旋转中心,将线段PQ按逆时针方向旋转60°得线段QD,若点P、Q同时出发,则当运动
10
3
10
3
s时,点D恰好落在BC边上.

查看答案和解析>>

同步练习册答案