科目:初中数学 来源: 题型:
已知:如图,在正方形ABCD中,E是CD边上的一点,F为BC延长线上一点,且CE=CF.
(1)求证:△BEC≌△DFC;
(2)如果BC+DF=9,CF=3,求正方形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图1,在平面直角坐标系xOy中,等腰直角△AOB的斜边OB在x上,顶点A的坐标为(3,3).
(1)求直线OA的解析式;
(2)如图2,如果点P是x轴正半轴上的一个动点,过点P作PC∥y轴,交直线OA于点C,设点P的坐标为(m,0),以A、C、P、B为顶点的四边形面积为S,求S与m之间的函数关系式;
(3)如图3,如果点D(2,a)在直线AB上. 过点O、D作直线OD,交直线PC于点E,在CE的右侧作矩形CGFE,其中CG=
,请你直接写出矩形CGFE与△AOB重叠部分为轴对称图形时m的取值范围.
![]()
图1 图2 图3
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线
交坐标轴于A、B、D三点,过点D作
轴的平行线交抛物线于点C.直线l过点E(0,-
),且平分梯形ABCD面积.
⑴ 直接写出A、B、D三点的坐标;
⑵ 直接写出直线l的解析式;
⑶ 若点P在直线l上,且在x轴上方,tan∠OPB=
,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com