精英家教网 > 初中数学 > 题目详情

满足﹣的整数共有(  )个.

 

A.

4

B.

3

C.

2

D.

1

A

解答:

解:∵4<5<9,

∴2<<3,

∴﹣3<﹣<﹣2,

∵1<3<4,

∴1<<2,

∴﹣在数轴上的位置如图所示:

∴x的整数值可以是﹣2,﹣1,0,1,共4个.

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P´(点P´不在y轴上),连接PP´,P´A,P´C.设点P的横坐标为a.

(1)当b=3时,

①求直线AB的解析式;

②若点P′的坐标是(﹣1,m),求m的值;

(2)若点P在第一象限,记直线AB与P´C的交点为D.当P´D:DC=1:3时,求a的值;

(3)是否同时存在a,b,使△P´CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.

 


查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(﹣4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P,D,B三点作⊙Q与y轴的另一个交点为E,延长DQ交⊙Q于点F,连结EF,BF.

 (1)求直线AB的函数解析式;

(2)当点P在线段AB(不包括A,B两点)上时.

①求证:∠BDE=∠ADP;

②设DE=x,DF=y.请求出y关于x的函数解析式;

(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).

(1)求抛物线l的解析式(用含m的式子表示);

(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;

(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(非课改)已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=﹣1,则m的值是(  )

 

A.

3或﹣1

B.

3

C.

1

D.

﹣3或1

查看答案和解析>>

同步练习册答案