精英家教网 > 初中数学 > 题目详情
(2003•无锡)已知:如图,四边形ABCD为菱形,AF⊥AD交BD于点E,交BC于点F.
(1)求证:AD2=DE•DB;
(2)过点E作EG⊥AF交AB于点G,若线段BE、DE(BE<DE)的长是方程x2-3mx+2m2=0(m>0)的两个根,且菱形ABCD的面积为,求EG的长.

【答案】分析:(1)连接AC交BD于O,根据菱形的性质可得到△AOD∽△EAD,根据相似三角形的对应边成比例即可得到结果;
(2)先解二次方程,求出BE,DE的值,直接利用(1)的结果,可求出AD的值,再利用勾股定理及三角函数求得AE,EF,BF的值,根据比例线段求得EG的长,再根据菱形的面积可求出m的值,那么EG就求出来了.
解答:解法一:(1)证明:连接AC交BD于点O(1分)
∵四边形ABCD为菱形
∴AC⊥BD,BO=OD(2分)
∵AE⊥AD
∴△AOD∽△EAD
(3分)
∴AD2=OD×ED
∴AD2=DE×BD(4分)

(2)解:解方程x2-3mx+2m2=0得x1=m,x2=2m
∵BE<DE
∴BE=m,DE=2m(5分)
∵AD2=DE×BD
∴AD=m(6分)
在Rt△BEF中,DE=2m,AD=m
∴AE=m,∠ADB=30°
在Rt△ADE中,∠EBF=30°,BE=m
∴EF=m,∴AF=m(7分)
∵SABCD=AD×AF=m=6
∴m2=4
∴m=±2(负值舍去)
∴m=2(8分)
∵EG⊥AF,AD⊥AF
∴GE∥AD

∴GE=(9分)

解法二:(1)证:取DE的中点G(1分)
在Rt△EAD中,AG=DG=EG
∴∠GAD=∠GDA(2分)
∵四边形ABCD为菱形
∴AB=AD
∴∠ABD=∠ADB
∴∠GAD=∠ABD,∠ADB=∠ADB
∴△ADG∽△BDA(3分)

∴AD2=DG×BD=DE×BD(4分)

(2)解:∵x2-3mx+2m2=0
∴x1=m,x2=2m
∵BE<DE
∴BE=m,DE=2m(5分)
∵AD2=DE×BD
∴AD=m(6分)
Rt△AOD中,AD=m,OD=m,
∴AO=m,
∴AC=m(7分)
∵SABCD=AC×BD=×m×3m=6
∴m2=4,∴m=±2(负值舍去)
∴m=2(8分)
∵EG⊥AE,AD⊥AF
∴GE∥AD

∴GE=(9分)
点评:本题考查菱形的性质、勾股定理,解一元二次方程的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2003•无锡)已知抛物线y=ax2+bx+c(a<0)与x轴交于A、B两点,点A在x轴的负半轴上,点B在x轴的正半轴上,又此抛物线交y轴于点C,连AC、BC,且满足△OAC的面积与△OBC的面积之差等于两线段OA与OB的积(即S△OAC-S△OBC=OA•OB)
(1)求b的值;
(2)若tan∠CAB=,抛物线的顶点为点P,是否存在这样的抛物线,使得△PAB的外接圆半径为?若存在,求出这样的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2003年江苏省无锡市中考数学试卷(解析版) 题型:解答题

(2003•无锡)已知抛物线y=ax2+bx+c(a<0)与x轴交于A、B两点,点A在x轴的负半轴上,点B在x轴的正半轴上,又此抛物线交y轴于点C,连AC、BC,且满足△OAC的面积与△OBC的面积之差等于两线段OA与OB的积(即S△OAC-S△OBC=OA•OB)
(1)求b的值;
(2)若tan∠CAB=,抛物线的顶点为点P,是否存在这样的抛物线,使得△PAB的外接圆半径为?若存在,求出这样的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《圆》(11)(解析版) 题型:解答题

(2003•无锡)已知:如图,△ABC内接于⊙O1,以AC为直径的⊙O2交BC于点D,AE切⊙O1于点A,交⊙O2于点E,连接AD、CE,若AC=7,AD=3,tanB=
求:(1)BC的长;
(2)CE的长.

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《三角形》(06)(解析版) 题型:解答题

(2003•无锡)已知:如图,△ABC中,AB=AC,AD⊥BC于点D,E是AD延长线上一点,连BE、CE.
求证:BE=CE.

查看答案和解析>>

科目:初中数学 来源:2003年江苏省无锡市中考数学试卷(解析版) 题型:填空题

(2003•无锡)已知是关于x、y的方程2x-y+3k=0的解,则k=   

查看答案和解析>>

同步练习册答案