精英家教网 > 初中数学 > 题目详情

如图,△AOB为等边三角形,点B的坐标为(-2,0),过点C(2,0)作直线l交AO于点D,交AB于E,点E在反比例函数数学公式<0)的图象上,若△ADE和△DCO(即图中两阴影部分)的面积相等,则k值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:连接AC,先由等边三角形及等腰三角形的性质判断出△ABC是直角三角形,再由S△ADE=S△DCO,S△AEC=S△ADE+S△ADC,S△AOC=S△DCO+S△ADC,可得出S△AEC=S△AOC,故可得出AE的长,再由中点坐标公式求出E点坐标,把点E代入反比例函数y=即可求出k的值.
解答:解:连接AC.
∵点B的坐标为(-2,0),△AOB为等边三角形,
∵AO=OC=2,
∴∠OCA=∠OAC,
∵∠AOB=60°,
∴∠ACO=30°,∠B=60°,
∴∠BAC=90°,
∴点A的坐标为(-1,),
∵S△ADE=S△DCO,S△AEC=S△ADE+S△ADC,S△AOC=S△DCO+S△ADC
∴S△AEC=S△AOC=×AE•AC=×CO×
AE•2=×2×
∴AE=1.
∴E点为AB的中点(-
把E点(-)代入y=得,k=(-)×=-
故答案为:-
点评:本题考查的是反比例函数综合题,涉及到直角三角形的判定与性质、等边三角形的性质、三角形的面积等有关知识,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△AOB为等边三角形,点B的坐标为(-2,0),过点C(2,0)作直线l交AO于D,交AB于E,精英家教网点E在某反比例函数图象上,当△ADE和△DCO的面积相等时,那么该反比例函数解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖州一模)如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(-4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数x图象上,当△ADE和△DCO的面积相等时,k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•上虞市模拟)如图,△AOB为等边三角形,点B的坐标为(-2,0),过点C(2,0)作直线l交AO于点D,交AB于E,点E在反比例函数y=
k
x
(x
<0)的图象上,若△ADE和△DCO(即图中两阴影部分)的面积相等,则k值为
-
3
3
4
-
3
3
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•普陀区模拟)如图,△AOB为等边三角形,点B的坐标为(-2,0),过点C(2,0)作直线l交AO于点D,交AB于E,点E在反比例函数y=
k
x
(x
<0)的图象上,若△ADE和△DCO(即图中两阴影部分)的面积相等,则k值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△AOB为等边三角形,点B的坐标为(-2,0),过点C(2,0)作直线l交AO于D,交AB于E,点E在某反比例函数图象上,当△ADE和△DCO的面积相等时,那么该反比例函数解析式为(  )

查看答案和解析>>

同步练习册答案