精英家教网 > 初中数学 > 题目详情
14.某公司10名职工5月份工资统计如表所示,则该公司10名职工5月份工资的众数和中位数分别是(  )
工资(元)2000220024002600
人数(人)2341
A.2400,2400B.2400,2300C.2200,2200D.2200,2300

分析 根据中位数和众数的定义求解即可;中位数是将一组数据从小到大重新排列,找出最中间的两个数的平均数,众数是一组数据中出现次数最多的数.

解答 解:∵2400出现了4次,出现的次数最多,
∴众数是2400;
∵共有10个数,
∴中位数是第5、6个数的平均数,
∴中位数是(2200+2400)÷2=2300;
故选B.

点评 此题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.若最简二次根式$\sqrt{1+a}$与$\sqrt{4{a^2}-2}$是同类二次根式,则a=-$\frac{3}{4}$或1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在菱形ABCD中,点P是对角线BD上一点,PE⊥AB于点E,PE=3,则点P到BC的距离等于3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:
(1)$\sqrt{0.04}$+$\root{3}{-8}$-$\sqrt{\frac{1}{4}}$
(2)|1-$\sqrt{2}$|+|$\sqrt{2}$-$\sqrt{3}$|+|$\sqrt{3}$-2|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:$\frac{\sqrt{2}×\sqrt{6}}{\sqrt{3}}$-1
解:

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.小德从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?若设小德从家里到学校的平路是x米,下坡路y米,根据题意列方程组为(  )
A.$\left\{\begin{array}{l}{\frac{x}{60}+\frac{y}{80}=15}\\{\frac{y}{40}+\frac{x}{60}=10}\end{array}\right.$B.$\left\{\begin{array}{l}{\frac{x}{60}+\frac{y}{80}=10}\\{\frac{y}{80}+\frac{x}{40}=15}\end{array}\right.$
C.$\left\{\begin{array}{l}{\frac{x}{60}+\frac{y}{80}=10}\\{\frac{y}{40}+\frac{x}{60}=15}\end{array}\right.$D.$\left\{\begin{array}{l}{\frac{x}{40}+\frac{y}{80}=10}\\{\frac{y}{40}+\frac{x}{60}=15}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)方法回顾
在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:
第一步添加辅助线:如图1,在△ABC中,延长DE (D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;
第二步证明△ADE≌△CFE,再证四边形DBCF是平行四边形,从而得到DE∥BC,DE=$\frac{1}{2}$BC.

(2)问题解决
如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.
(3)拓展研究
如图3,在四边形ABCD中,∠A=105°,∠D=120°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=3,DF=2$\sqrt{2}$,∠GEF=90°,求GF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:($\frac{1}{2}$)-1+(π-2 016)0-(-1)2017

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知y=$\sqrt{x-1}$+$\sqrt{1-x}$+3,求x+y-4.

查看答案和解析>>

同步练习册答案