已知:直线y=ax+b与抛物线y=ax2﹣bx+c的一个交点为A(0,2),同时这条直线与x轴相交于点B,且相交所成的角β为45°.
(1)求点B的坐标;
(2)求抛物线y=ax2﹣bx+c的解析式;
(3)判断抛物线y=ax2﹣bx+c与x轴是否有交点,并说明理由.若有交点设为M,N(点M在点N左边),将此抛物线关于y轴作轴反射得到M的对应点为E,轴反射后的像与原像相交于点F,连接NF,EF得△DEF,在原像上是否存在点P,使得△NEP的面积与△NEF的面积相等?若存在,请求出点P的坐标;若不存在,请说明理由.
![]()
解:(1)∵直线y=ax+b过A(0,2),同时这条直线与x轴相交于点B,且相交所成的角β为45°,
∴OA=OB,
∴当a>0时,B(﹣2,0),当a<0时,B(2,0);
(2)把A(0,2),B(﹣2,0)代入直线y=ax+b得;
,
解得:
,
把A(0,2),B(2,0)代入直线y=ax+b得
,
解得:
,
∵抛物线y=ax2﹣bx+c过A(0,2),
∴c=2,
∴抛物线的解析式为:y=x2+2x+2或y=﹣x2+2x+2.
(3)存在.
如图,抛物线为y=x2+2x+2时,b2﹣4ac=4﹣4×1×2<0,抛物线与x轴没有交点,
抛物线为y=﹣x2+2x+2时,b2﹣4ac=4﹣4×(﹣1)×2>0,抛物线与x轴有两个交点;
![]()
∵轴反射后的像与原像相交于点F,则F点即为A点,
∴F(0,2)
∵△NEP的面积与△NEF的面积相等且同底,
∴P点的纵坐标为2或﹣2,
当y=2时,﹣x2﹣2x+2=2,解得:x=﹣2或x=0(与点F重合,舍去);
当y=﹣2时,﹣x2﹣2x+2=﹣2,解得:x=﹣1+
,x=﹣1﹣
,
∴存在满足条件的点P,点P坐标为:(﹣2,2),(﹣1+
,﹣2),(﹣1﹣
,﹣2).
科目:初中数学 来源: 题型:
如图,BD是矩形ABCD的一条对角线.
(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规左图,保留作图痕迹,不要求写作法);
(2)求证:DE=BF.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A.只愿意就读普通高中;B.只愿意就读中等职业技术学校;C.就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:
(1)本次活动共调查了多少名学生?
(2)补全图一,并求出图二中B区域的圆心角的度数;
(3)若该校八、九年级学生共有2800名,请估计该校学生只愿意就读中等职业技术学校的概率.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为S2甲=0.9,S2乙=1.1,则甲、乙两支仪仗队的队员身高更整齐的是 (填“甲”或“乙”).
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知抛物线经过点A(﹣2,0)、B(4,0)、C(0,﹣8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)直线CD交x轴于点E,过抛物线上在对称轴的右边的点P,作y轴的平行线交x轴于点F,交直线CD于M,使PM=
EF,请求出点P的坐标;
(3)将抛物线沿对称轴平移,要使抛物线与(2)中的线段EM总有交点,那么抛物线向上最多平移多少个单位长度,向下最多平移多少个单位长度.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com