解:∵abc≠0,
∴a≠0,b≠0,c≠0.
∵(1)当a,b,c均大于零时,原式=3;
(2)当a,b,c均小于零时,原式=-3;
(3)当a,b,c中有两个大于零,一个小于零时,原式=1;
(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.
∴

+

+

的所有可能值是:±3,±1.
分析:由已知可得,a,b,c均不为零,因为题中没有指明a,b,c的正负,故应该分四种情况:(1)当a,b,c均大于零时;(2)当a,b,c均小于零时;(3)当a,b,c中有两个大于零,一个小于零时;(4)当a,b,c中有两个小于零,一个大于零时,从而确定答案.
点评:此题主要考查了绝对值的性质,采用分类讨论思想是解答此题的关键.