精英家教网 > 初中数学 > 题目详情
如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G。
(1)求证:点F是BD中点;
(2)求证:CG是⊙O的切线;
(3)若FB=FE=2,求⊙O的半径。
解:(1)∵CH⊥AB,DB⊥AB,
∴△AEH∽AFB,△ACE∽△ADF,

∵HE=EC,
∴BF=FD;
(2)连接CB、OC,
∵AB是直径,
∴∠ACB=90°,
∵F是BD中点,
∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO,
∴∠OCF=90°,
∴CG是⊙O的切线;
(3)由FC=FB=FE得:∠FCE=∠FEC,
可证得:FA=FG,且AB=BG,
由切割线定理得:(2+FG)2=BG×AG=2BG2    ①,
在Rt△BGF中,
由勾股定理得:BG2=FG2-BF2 ②
由①、②得:FG2-4FG-12=0,
解之得:FG1=6,FG2=-2(舍去)
∴AB=BG=
∴⊙O半径为2
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知点A是以MN为直径的半圆上一个三等分点,点B是AN的中点,点P是半径ON上的点,若⊙O的半径为1,则AP+BP的最小值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于精英家教网点D,E为CH的中点,连接AE并延长交BD于F,直线CF交直线AB于点G.
(1)求证:点F是BD的中点;
(2)求证:CG是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:AE•FD=AF•EC;
(2)求证:FC=FB;
(3)若FB=FE=2,求⊙O的半径r的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:①点F是BD中点;②CG是⊙O的切线;
(2)若FB=FE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点A是以MN为直径的半圆上一个三等分点,点B是
AN
的中点,点P是半径ON上的点.若⊙O的半径为l,则AP+BP的最小值为(  )

查看答案和解析>>

同步练习册答案