【题目】如图,中,,,,若动点P从点C开始,按的路径运动,且速度为每秒1cm,设出发的时间为t秒.
出发2秒后,求的面积;
当t为几秒时,BP平分;
问t为何值时,为等腰三角形?
【答案】(1)18;(2)当秒时,BP平分;(3)或13s或12s或时为等腰三角形.
【解析】
(1)利用勾股定理得出AC=8cm,进而表示出AP的长,进而得出答案;
(2)过点P作PD⊥AB于点D,由HL证明Rt△BPD≌Rt△BPC,得出BD=BC=6cm,因此AD=10﹣6=4cm,设PC=x cm,则PA=(8﹣x)cm,由勾股定理得出方程,解方程即可;
(3)利用分类讨论的思想和等腰三角形的特点及三角形的面积求出答案.
(1)如图1.
∵∠C=90°,AB=10cm,BC=6cm,∴AC=8cm,根据题意可得:PC=2cm,则AP=6cm,故△ABP的面积为:×AP×BC=×6×6=18(cm2);
(2)如图2所示,过点P作PD⊥AB于点D.
∵BP平分∠CBA,∴PD=PC.
在Rt△BPD与Rt△BPC中,,∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=6 cm,∴AD=10﹣6=4 cm.
设PC=x cm,则PA=(8﹣x)cm
在Rt△APD中,PD2+AD2=PA2,即x2+42=(8﹣x)2,解得:x=3,∴当t=3秒时,BP平分∠CBA;
(3)如图3,若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;
若P在AB边上时,有3种情况:
①如图4,若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;
②如图5,若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;
③如图
∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC,∴PA=PB=5cm
∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.
综上所述:当t=6s或13s或12s或 10.8s 时△BCP为等腰三角形.
科目:初中数学 来源: 题型:
【题目】直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.
(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.
(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.
(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,AB为直径,AC为弦,过点C作CD⊥AB于点D,将△ACD沿AC翻折,点D落在点E处,AE交⊙O于点F,连接OC、FC.
(1)求证:CE是⊙O的切线.
(2)若FC∥AB,求证:四边形AOCF是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子中装着5个完全相同的小球,分别标有数字0,1,,2,-1,-2,从袋中随机取出一个小球。
(1)随机地从布袋中摸出一个小球,则摸出的球上数字为正数的概率为
(2)若第一次从布袋中随机摸出一个小球,设记下的数字为x,再将此球放回盒中,第二次再从布袋中随机抽取一张,设记下的数字为y,记M(x,y),请用画树状图或列表法列举出点M所有可能的坐标,并求点M位于第二象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的文字,解答问题.
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.
请解答:(1)若的整数部分为,小数部分为,求的值.
(2)已知:,其中是整数,且,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】证明:两条平行线被第三条直线所截,一组同位角的平分线互相平行.
已知:如图,_______________________.
求证:_____________________________.
证明:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为3万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.4万元,设可变成本平均每年增长的百分率为x.
(1)用含x的代数式表示第3年的可变成本为万元.
(2)如果该养殖户第3年的养殖成本为6.456万元,求可变成本平均每年增长的百分率?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,长方形纸片ABCD的长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合.
求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com