精英家教网 > 初中数学 > 题目详情
(2005•台州)如图,PA、PB是⊙O的切线,A、B为切点,OP交AB于点D,交⊙O于点C,在线段AB、PA、PB、PC、CD中,已知其中两条线段的长,但还无法计算出⊙O直径的两条线段是( )

A.AB,CD
B.PA,PC
C.PA,AB
D.PA,PB
【答案】分析:根据勾股定理和射影定理求解.
解答:解:A、构造一个由半径、半弦、弦心距组成的直角三角形,根据垂径定理以及勾股定理即可计算;
B、根据切割线定理即可计算;
C、首先根据垂径定理计算AD的长,再根据勾股定理计算PD的长,连接OA,根据射影定理计算OD的长,最后根据勾股定理即可计算其半径;
D、根据切线长定理,得PA=PB.相当于只给了一条线段的长,无法计算出半径的长.
故选D.
点评:综合运用垂径定理、勾股定理、切割线定理、射影定理等.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《图形的相似》(05)(解析版) 题型:解答题

(2005•台州)如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.
(1)求点C的坐标;
(2)连接BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB2=BP•BE,能否推出AP⊥BE?请给出你的结论,并说明理由;
(3)在直线BE上是否存在点Q,使得AQ2=BQ•EQ?若存在,求出点Q的坐标;若不存在,也请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《圆》(13)(解析版) 题型:解答题

(2005•台州)如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.
(1)求点C的坐标;
(2)连接BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB2=BP•BE,能否推出AP⊥BE?请给出你的结论,并说明理由;
(3)在直线BE上是否存在点Q,使得AQ2=BQ•EQ?若存在,求出点Q的坐标;若不存在,也请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《三角形》(13)(解析版) 题型:解答题

(2005•台州)如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.
(1)求点C的坐标;
(2)连接BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB2=BP•BE,能否推出AP⊥BE?请给出你的结论,并说明理由;
(3)在直线BE上是否存在点Q,使得AQ2=BQ•EQ?若存在,求出点Q的坐标;若不存在,也请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《一次函数》(06)(解析版) 题型:解答题

(2005•台州)如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.
(1)求点C的坐标;
(2)连接BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB2=BP•BE,能否推出AP⊥BE?请给出你的结论,并说明理由;
(3)在直线BE上是否存在点Q,使得AQ2=BQ•EQ?若存在,求出点Q的坐标;若不存在,也请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年浙江省台州市中考数学试卷(解析版) 题型:解答题

(2005•台州)如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.
(1)求点C的坐标;
(2)连接BC并延长交⊙C于另一点E,若线段BE上有一点P,使得AB2=BP•BE,能否推出AP⊥BE?请给出你的结论,并说明理由;
(3)在直线BE上是否存在点Q,使得AQ2=BQ•EQ?若存在,求出点Q的坐标;若不存在,也请说明理由.

查看答案和解析>>

同步练习册答案