精英家教网 > 初中数学 > 题目详情
12.已知,∠ABC=90°,∠BAC=50°,点D是直线AC上的一个动点,将三角形CDB沿着线段DB翻折,翻折后点C对应点为点E,当∠ABD=20°时,BE∥AC.

分析 根据BE∥AC可以求得∠CBE的度数,然后根据BD是CE的对称轴即可求得∠CBD的度数,则∠ABD即可求得.

解答 解:直角△ABC中,∠ACB=90°-∠BAC=90°-50°=40°.
∵BE∥AC,
∴∠CBE=180°-∠BAC=180°-40°=140°,
∵C、E关于BD对称,
∴∠CBD=$\frac{1}{2}$∠CBE=$\frac{1}{2}$×140°=70°,
∴∠ABD=∠ABC-∠CBD=90°-70°=20°.
故答案是:20.

点评 本题考查了翻折变换以及平行线的性质,正确作出图形,求得∠CBD的度数是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.求下列各式中的x
(1)16(x-2)2=81
(2)27(x+1)3+125=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.计算20160+($\frac{1}{2}$)-1-2sin60°-|$\sqrt{3}$-2|=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图①所示的图形像我们常见的学习用品-圆规,我们不妨把这样的图形叫做“规形图”,那么在这样一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥聪明才智,解决以下问题:
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图②,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=40°;
②如图③,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;
③如图①,∠ABD、∠ACD的10等分线分别相交于点G1、G2、…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.若关于x的一元二次方程m2x2-(2m-1)x-1=0有两个实数根,则m的取值范围是(  )
A.m$<\frac{1}{4}$B.m$≤\frac{1}{4}$C.m$≥\frac{1}{4}$D.m$≤\frac{1}{4}$且m≠0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解下列方程
(1)-4x+1=-2($\frac{1}{2}$-x)
(2)2-$\frac{3x-7}{4}=-\frac{x+7}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,将平行四边形ABCD沿对角线AC折叠,点B的对应点落在点E处,且点B、A、E在同一条直线上,CE交AD于点F,连接ED.下列结论中错误的是(  )
A.AF=$\frac{1}{2}BC$B.四边形ACDE是矩形
C.图中与△ABC全等的三角形有4个D.图中有4个等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)$\sqrt{75}$-($\sqrt{1\frac{1}{3}}$-$\sqrt{48}$)
(2)$\sqrt{27{a}^{3}}$(a2$\sqrt{\frac{3}{a}}$-$\frac{a}{4}$$\sqrt{\frac{a}{3}}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,MN是⊙O的直径,MN=2,点A在圆周上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则△PAB周长的最小值为(  )
A.$\frac{\sqrt{6}+\sqrt{2}}{2}$B.$\frac{1}{2}$+$\sqrt{2}$C.$\frac{\sqrt{3}+\sqrt{2}}{2}$D.$\frac{\sqrt{6}-\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案