精英家教网 > 初中数学 > 题目详情

方程ax2+bx+c=0(a≠0)中,数学公式,那么该方程


  1. A.
    一定没有实数根
  2. B.
    一定有两个不相等的实数根
  3. C.
    一定又两个相等的实数根
  4. D.
    只有一个实数根
B
分析:根据根的判别式△=b2-4ac来判断该方程的根的情况.
解答:∵程ax2+bx+c=0(a≠0)中,
∴ac<0,
∴-4ac>0,
∴△=b2-4ac>0,
∴该方程有两个不相等的实数根.
故选B.
点评:本题主要考查了一元二次方程的根的判别式.一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c-8=0的根的情况是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网己知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a+2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限.其中正确的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

抛物线y=ax2+bx+c与x轴的交点个数是由
△=b2-4ac
△=b2-4ac
决定的:当
△=b2-4ac>0
△=b2-4ac>0
时,抛物线与x轴有两个交点,交点横坐标是方程
ax2+bx+c=0
ax2+bx+c=0
的两根;当
(-△=b2-4ac=0
(-△=b2-4ac=0
时,抛物线与x轴有一个交点,交点坐标是
(-
b
2a
,0)
(-
b
2a
,0)
;当
△=b2-4ac<0时
△=b2-4ac<0时
时,抛物线与x轴没有交点.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)解方程:(2x-3)2-6(2x-3)+5=0.
(2)已知a、b、c均为实数且
a2-2a+1
+|b+1|+(c+3)2=0
,求方程ax2+bx+c=0的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知函数y=ax2+bx+c的图象如图所示,试根据图象回答下列问题:
(1)求出函数的解析式;
(2)写出抛物线的对称轴方程和顶点坐标?
(3)当x取何值时y随x的增大而减小?
(4)方程ax2+bx+c=0的解是什么?
(5)不等式ax2+bx+c>0的解集是什么?

查看答案和解析>>

同步练习册答案