精英家教网 > 初中数学 > 题目详情
(2008•成都)如图,已知⊙O的半径为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优弧上的一个动点(不与点A、点B重合).连接AC、BC,分别与⊙M相交于点D、点E,连接DE.若AB=2
(1)求∠C的度数;
(2)求DE的长;
(3)如果记tan∠ABC=y,=x(0<x<3),那么在点C的运动过程中,试用含x的代数式表示y.

【答案】分析:(1)根据一条弧所对的圆周角等于它所对的圆心角的一半,连OM,OB,可求出∠BOM的度数,∠C=∠BOM.
(2)根据圆内接四边形一外角等于它的内对角,可证明△CDE∽△CBA,两三角形相似对应线段成比例,同时运用(1)中∠C=60°可得的值,能计算出DE的长.
(3)根据直径所对的圆周角是直角,连接AE,在直角三角形中用三角函数可求出y与x之间的关系.
解答:解:(1)如图:连接OB、OM.
则在Rt△OMB中,∵OB=2,MB=,∴OM=1.
∵OM=,∴∠OBM=30°.
∴∠MOB=60°.
连接OA.则∠AOB=120°.
∴∠C=∠AOB=60°.

(2)∵四边形ABED内接于⊙M,
∴∠CBA+∠ADE=180°,
∵∠CDE+∠ADE=180°,
∴∠CDE=∠CBA,
在△CDE和△CBA中,
∵∠CDE=∠CBA,∠ECD=∠ACB,
∴△CDE∽△CBA,∴
连接BD,则∠BDC=∠ADB=90°.
在Rt△BCD中,∵∠BCD=60°,∴∠CBD=30°.∴BC=2DC.
.即
∴DE==×2=

(3)连接AE.
∵AB是⊙M的直径,∴∠AEB=∠AEC=90°.
,可得AD=x•DC,AC=AD+DC=(x+1)•DC.
在Rt△ACE中,∵cos∠ACE=,sin∠ACE=
∴CE=AC•cos∠ACE=(x+1)•DC•cos60°=
AE=AC•sin∠ACE=(x+1)•DC•sin60°=
又由(2),知BC=2DC.
∴BE=BC-CE=
在Rt△ABE中,tan∠ABC=
(0<x<3).
点评:本题考查圆周角与圆心角之间的关系,园中相似三角形的运用,以及由直径所对的圆周角是直角可得直角三角形,在直角三角形中对三角函数的灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2008•成都)如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且|AB|=3,sin∠OAB=
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;
(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若将点O、点A分别变换为点Q(-2k,0)、点R(5k,0)(k>1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为S△QMN,△QNR的面积S△QNR,求S△QMN:S△QNR的值.

查看答案和解析>>

科目:初中数学 来源:2008年四川省成都市中考数学试卷(解析版) 题型:解答题

(2008•成都)如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且|AB|=3,sin∠OAB=
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;
(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若将点O、点A分别变换为点Q(-2k,0)、点R(5k,0)(k>1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为S△QMN,△QNR的面积S△QNR,求S△QMN:S△QNR的值.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《圆》(05)(解析版) 题型:选择题

(2008•成都)如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( )

A.12πcm2
B.15πcm2
C.18πcm2
D.24πcm2

查看答案和解析>>

科目:初中数学 来源:2009年河北省廊坊市安次区九年级网络试卷设计大赛数学试卷(3)(解析版) 题型:选择题

(2008•成都)如图,小红同学要用纸板制作一个高4cm,底面周长是6πcm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( )

A.12πcm2
B.15πcm2
C.18πcm2
D.24πcm2

查看答案和解析>>

同步练习册答案