如图,已知E是?ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.
(1)求证:△ABE≌△FCE.
(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.
|
分析:(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对应角相等,利用ASA可得出三角形ABE与三角形FCE全等; (2)由△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEB等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形. 解答:证明:(1)∵四边形ABCD为平行四边形, ∴AB∥DC, ∴∠ABE=∠ECF, 又∵E为BC的中点, ∴BE=CE, 在△ABE和△FCE中, ∵ ∴△ABE≌△FCE(ASA); (2)∵△ABE≌△FCE, ∴AB=CF,又AB∥CF, ∴四边形ABFC为平行四边形, ∴BE=EC,AE=EF, 又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角, ∴∠AEC=∠ABC+∠EAB, ∴∠ABC=∠EAB, ∴AE=BE, ∴AE+EF=BE+EC,即AF=BC, 则四边形ABFC为矩形. 点评:此题考查了矩形的判定,平行四边形的性质,三角形的外角性质,等腰三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键. |
|
考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质. |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com