精英家教网 > 初中数学 > 题目详情

【题目】在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED的周长是9.其中正确的结论是(把你认为正确结论的序号都填上.)

【答案】①③④
【解析】解:∵△ABC为等边三角形,
∴BA=BC,∠ABC=∠C=∠BAC=60°,
∵△BCD绕点B逆时针旋转60°,得到△BAE,
∴∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,
∴∠BAE=∠ABC,
∴AE∥BC,所以①正确;
∵△BCD绕点B逆时针旋转60°,得到△BAE,
∴BD=BE,∠DBE=60°,
∴△BDE是等边三角形,所以③正确;
∴∠BDE=60°,
∵∠BDC=∠BAC+∠ABD>60°,
∴∠ADE≠∠BDC,所以②错误;
∵△BDE是等边三角形,
∴DE=BD=4,
而△BCD绕点B逆时针旋转60°,得到△BAE,
∴AE=CD,
∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+4=5+4=9,所以④正确.
故答案为①③④.

先根据等边三角形的性质得BA=BC,∠ABC=∠C=∠BAC=60°,再根据旋转的性质得到∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,所以∠BAE=∠ABC=60°,则根据平行线的判定方法即可得到AE∥BC;由△BCD绕点B逆时针旋转60°,得到△BAE得到BD=BE,∠DBE=60°,则可判断△BDE是等边三角形;根据等边三角形的性质得∠BDE=60°,而∠BDC>60°,则可判断∠ADE≠∠BDC;由△BDE是等边三角形得到DE=BD=4,再利用△BCD绕点B逆时针旋转60°,得到△BAE,则AE=CD,所以△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列结论:w

①若a+b+c=0,且abc≠0,则方程a+bx+c=0的解是x=1;

②若a(x﹣1)=b(x﹣1)有唯一的解,则a≠b;

③若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=﹣

④若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解;

其中结论正确个数有( )

A.4个 B.3个 C.2个 D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】4张写着以下数字的卡片,请按要求抽出卡片,完成下列各题:

(1)从中取出2张卡片,使这2张卡片上数字之积最大,最大值是________.

(2)从中取出2张卡片,使这2张卡片上数字之差最小,最小值是________.

(3)从中取出4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使结果为24,请写出一种符合要求的运算式子________.(注:4个数字都必须用到且只能用一次.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.

(1)求线段AB的长|AB|;

(2)设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,求x的值;

(3)若点PA的左侧,M、N分别是PA、PB的中点,当PA的左侧移动时,下列两个结论:

①|PM|+|PN|的值不变;②|PN|﹣|PM|的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数y=-x与函数y=-的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D,求四边形ACBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,

(1)求证:四边形AEBD是菱形;

(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是函数y=与函数y=在第一象限内的图象,点P是y=的图象上一动点,PAx轴于点A,交y=的图象于点C,PBy轴于点B,交y=的图象于点D.

(1)求证:D是BP的中点;

(2)求四边形ODPC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习有理数运算时发现以下三个等式:(ab)2=a2b2,(ab)3=a3b3,(ab)4=a4b4

(1)他把a=﹣2,b=3代入到第一个等式的左右两边验证:

因为,左=(﹣2×3)2=36,右=(﹣2)2×32=36,左=右,所以成立.

请你帮他把a=﹣2,b=3代入到后两个等式的左右两边验证是否成立;

(2)通过上述验证,请你猜想直接写出结果:(ab)365等于多少,归纳得出:(ab)n等于多少(n为正整数);

(3)请应用(2)中归出的结论计算:(2017×112018

查看答案和解析>>

同步练习册答案