精英家教网 > 初中数学 > 题目详情
在△ABC中,AB=15,AC=13,BC边上的高AD=12,则边BC的长是(  )
分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD-BD.
解答:解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,
在Rt△ABD中AB=13,AD=12,由勾股定理得:BD2=AB2-AD2=132-122=25,
则BD=5,
在Rt△ACD中AC=15,AD=12,由勾股定理得:CD2=AC2-AD2=152-122=81,
则CD=9,
故BC的长为BD+DC=9+5=14;
(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,
在Rt△ABD中AB=13,AD=12,由勾股定理得:BD2=AB2-AD2=132-122=25,
则BD=5,
在Rt△ACD中AC=15,AD=12,由勾股定理得:CD2=AC2-AD2=152-122=81,
则CD=9,
故BC的长为DC-BD=9-5=4.
综上可得BC的长为14或4.
故选C.
点评:本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答,注意分类讨论,不要漏解,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案