精英家教网 > 初中数学 > 题目详情
18.如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点0,点F、G分别是BO、CO的中点,连接AO.若AO=6cm,BC=8cm,则四边形DEFG的周长是(  )
A.14 cmB.18 cmC.24 cmD.28 cm

分析 由中位线定理,可得EF∥AO,FG∥BC,且都等于边长BC的一半,据此可得出结论.

解答 解:∵BD,CE是△ABC的中线,
∴ED∥BC且ED=$\frac{1}{2}$BC,
∵F是BO的中点,G是CO的中点,
∴FG∥BC且FG=$\frac{1}{2}$BC,
∴ED=FG=$\frac{1}{2}$BC=4cm,
同理GD=EF=$\frac{1}{2}$AO=3cm,
∴四边形DEFG的周长=3+4+3+4=14(cm).
故选A.

点评 本题考查了平行四边形的判定和三角形的中位线定理,三角形的中位线的性质定理,为证明线段相等和平行提供了依据.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.甲,乙,丙,丁四名跳高运动员赛前几次选拔赛成绩如表所示,根据表中的信息,如果要从中,选择一名成绩好又发挥稳定的运动员参加比赛,那么应选甲.
平均数(cm)185180185180
方差3.63.67.98.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知直线y=$\frac{1}{2}$x+b与双曲线y=$\frac{m}{x}$的一个交点为(2,5),直线与y轴交于点A.
(1)求m的值及点A的坐标;
(2)若点P在双曲线y=$\frac{m}{x}$的图象上,且S△POA=10,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算
(1)(ab2•(-2a3b)3
(2)(-3a2b)(3a2-2ab+4b2
(3)(6x4-4x3+2x2)÷(-2x2
(4)((x-5))(2x+5)-2x(x-3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)先阅读,再填空:
(x+5)(x+6)=x2+11x+30;
(x-5)(x-6)=x2-11x+30;
(x-5)(x+6)=x2+x-30;
(x+5)(x-6)=x2-x-30.
观察上面的算式,根据规律,直接写出下列各式的结果:
(a+90)(a-100)=a2-10a-9000;        (y-80)(y-90)=y2-170y+7200.
(2)先阅读,再填空:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;(x-1)(x4+x3+x2+x+1)=x5-1.
观察上面各式:①由此归纳出一般性规律:(x-1)(xn-1+xn-2+xn-3+…+x2+x+1)=xn-1;
②根据①直接写出1+3+32+…+367+368的结果$\frac{{3}^{69}-1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在菱形ABCD中,AB=2,∠ABC=60°,点O为对称中心,过点O的直线l交AD于点E,交BC于点F.
(1)求证:△AOE≌△COF;
(2)当∠AOE=30°时,求线段EF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:$\sqrt{25}$-$\root{3}{-27}$+$\sqrt{(-\frac{1}{2})^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.【问题情境】
数学课上,李老师提出了如下问题:在△ABC中,∠ABC=∠ACB=α,点D是AB边上任意一点,将射线DC绕点D逆时针旋转α与过点A且平行于BC边的直线交于点E.请判断线段BD与AE之间的数量关系.
小颖在小组合作交流中,发表自己的意见:“我们不妨从特殊情况下获得解决问题的思路,然后类比到一般情况.”小颖的想法获得了其他成员一致的赞成.
【问题解决】
如图1,当α=60°时,判断BD与AE之间的数量关系.
解法如下:过D点作AC的平行线交BC于F,构造全等三角形,通过推理使问题得到解决,请你直接写出线段BD与AE之间的数量关系:BD=AE.
【类比探究】
(2)如图2,当α=45°时,请判断线段BD与AE之间的数量关系,并进行证明;
(3)如图3,当α为任意锐角时,请直接写出线段BD与AE之间的数量关系:BD=2cosα•AE.(用含α的式子表示,其中0°<α<90°)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:
(1)$\sqrt{2\frac{1}{4}}$-$\root{3}{27}$+(π-3)0+|1-$\sqrt{3}$|;
(2)(-4x2y)2•(-xy2)÷(-2x5y3).

查看答案和解析>>

同步练习册答案