精英家教网 > 初中数学 > 题目详情

抛物线y=数学公式x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论.

解:(1)A点坐标为(-1,0)代入抛物线y=x2+bx-2得,
0=×(-1)2-b-2,解得b=-
∴原抛物线的解析式为:y=x2-x-2,
∴x=,y=-
∴D点坐标为:(,-);

(2)∵AC=,BC=2,AB=5,
∴AC2+BC2=AB2
∴△ABC是直角三角形.
故答案为:y=x2-x-2,(,-),△ABC是直角三角形.
分析:(1)先把A点坐标为(-1,0)代入抛物线y=x2+bx-2即可求出b的值,进而可求出抛物线的解析式,再由抛物线的顶点式即可求出其顶点坐标;
(2)由两点间的距离公式分别求出AC,BC,AB的长,再根据勾股定理即可判断出△ABC的形状.
点评:本题考查了抛物线与x轴的交点问题及勾股定理的逆定理,熟知坐标轴上各点坐标的特点及两点间的距离公式是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知Pi(i=1,2,3,4)是抛物线y=x2+bx+1上共圆的四点,它们的横坐标分别为xi(i=1,2,3,4),又xi(i=1,2,3,4)是方程(x2-4x+m)(x2-4x+n)=0的根,则二次函数y=x2+bx+1的最小值为(  )
A、-1B、-2C、-3D、-4

查看答案和解析>>

科目:初中数学 来源: 题型:

直线AB平行于x轴,与y轴交于点A(0,a),AB=a,经过原点的抛物线y=-x2+bx经过点B,精英家教网且与直线AB交于另一点C(在B的左边),抛物线的顶点为P.
(1)求抛物线的解析式(用含a的代数式表示);
(2)用含a的式子表示BC的长;
(3)当a为何值时,△PCB是等腰直角三角形?当a为何值时△PCB是等边三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+bx+c,经过点A(0,5)和点B(3,2)
(1)求抛物线的解析式:
(2)现有一半径为l,圆心P在抛物线上运动的动圆,问⊙P在运动过程中,是否存在⊙P与坐标轴相切的情况?若存在,请求出圆心P的坐标:若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:m,n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点B(m,0),A(0,n)
(1)求这条抛物线的解析式;
(2)(1)中的抛物线与x轴的另一个交点为C,顶点为D,求出C,D的坐标和△ACD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,交AC于F点,如直线AC把△PCH分成面积1:3的两部分,请求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•普陀区二模)如图,抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标;
(3)点M为平面直角坐标系上一点,写出使点M、A、B、D为平行四边形的点M的坐标.

查看答案和解析>>

同步练习册答案