精英家教网 > 初中数学 > 题目详情
经过点(3,2)的反比例函数的表达式为
y=
6
x
y=
6
x
分析:设出反比例函数表达式,然后把点的坐标代入进行计算即可得解.
解答:解:设反比例函数表达式为y=
k
x

∵函数经过点(3,2),
k
3
=2,
解得k=6,
所以,反比例函数表达式为y=
6
x

故答案为:y=
6
x
点评:本题考查了待定系数法求反比例函数解析式,是求函数解析式常用的方法,需要熟练掌握并灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:在△ABC中,∠ACB=90°,AC=BC,现将一块边长足够大的直角三角板的直角顶点置于AB的中点O处,两直角边分别经过点B、C,然后将三角板绕点O按顺时针方向旋转一个角度反(0°<a<90°),旋转后,直角三角板的直角边分别与AC、BC相交于点K、H,四边形CHOK是旋转过程中三角板与△ABC的重叠部分(如图1所示).那么,在上述旋转过程中:
(1)如图1,线段BH与CK具有怎样的数量关系?四边形CHOK的面积是否发生变化?请说明你发现的结论的理由.
(2)如图2,连接HK,
①若AK=12,BH=5,求△OKH的面积;
②若AC=BC=4,设BH=x,当△CKH的面积为2时,求x的值,并说出此时四边形CHOK是什么特殊四边形.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.
精英家教网
①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是(  )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是
 
,该图形与圆O的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,平面直角坐标系上有A(a,0)、B(0,-b)、C(b,0)三点,且a≥b>0,抛物线y=(x-2)(x-m)-(n-2)(n-m). (m,n为常数,且m+2≥2n>0),经过点A和点C,顶点为P
(1)当m,n满足什么关系时,S△AOB最大;
(3)如图,当△ACP为直角三角形时,判断以下命题是否正确:“直角三角形DEF的三个顶点都在这条抛物线上,且DF∥x轴,那么△ACP与△DEF斜边上的高相等”,如果正确请予以证明,不正确请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•浙江一模)如图1,在平面上,给定了半径为r的⊙O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这种把点P变为点P′的变换叫做反演变换,点P与点P′叫做互为反演点,⊙O称为基圆.
(1)如图2,⊙O内有不同的两点A、B,它们的反演点分别是A′、B′,则与∠A′一定相等的角是
(C)
(C)

(A)∠O         (B)∠OAB        (C)∠OBA           (D)∠B′
(2)如图3,⊙O内有一点M,请用尺规作图画出点M的反演点M′;(保留画图痕迹,不必写画法).
(3)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.已知基圆O的半径为r,另一个半径为r1的⊙C,作射线OC交⊙C于点A、B,点A、B关于⊙O的反演点分别是A′、B′,点M为⊙C上另一点,关于⊙O的反演点为M′.求证:∠A′M′B′=90°.

查看答案和解析>>

科目:初中数学 来源:2010年福建省厦门市思明区中考数学一模试卷(解析版) 题型:解答题

已知,平面直角坐标系上有A(a,0)、B(0,-b)、C(b,0)三点,且a≥b>0,抛物线y=(x-2)(x-m)-(n-2)(n-m). (m,n为常数,且m+2≥2n>0),经过点A和点C,顶点为P
(1)当m,n满足什么关系时,S△AOB最大;
(3)如图,当△ACP为直角三角形时,判断以下命题是否正确:“直角三角形DEF的三个顶点都在这条抛物线上,且DF∥x轴,那么△ACP与△DEF斜边上的高相等”,如果正确请予以证明,不正确请举出反例.

查看答案和解析>>

同步练习册答案