精英家教网 > 初中数学 > 题目详情
如图,在正方形ABCD中,AB=1,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作AH⊥EF于点H.若EF=BE+DF,那么下列结论:①AE平分∠BEF;②FH=FD;③∠EAF=45°;④S△EAF=S△ABE+S△ADF;⑤△CEF的周长为2.其中正确结论的个数是(  )
分析:把△ABE绕点A逆时针旋转90度,得到△ADG,根据旋转的性质得到△ABE≌△ADG,再利用SSS证明△AGF≌△AEF,进而得出③正确;
由△AGF≌△AEF,得出∠1=∠2,根据角平分线的性质得出AD=AH,则AH=AB,再由角平分线的判定得出AE平分∠BEF,故①正确;
由AE平分∠BEF及等角的余角相等得出∠BAE=∠HAE,再根据角平分线的性质得出BE=HE,再结合已知条件EF=BE+DF及BE=DG即可得出FH=FD,故②正确;
根据△AEF≌△AGF,△ABE≌△ADG,即可得出S△EAF=S△ABE+S△ADF,故④正确;
由EF=HE+FH,BE=HE,FH=FD,得出EF=BE+FD,则△CEF的周长=BC+CD,进而求出△CEF的周长为2,故⑤正确.
解答:解:如图:把△ABE绕点A逆时针旋转90度,得到△ADG,则△ABE≌△ADG,∠EAG=∠BAD=90°,
∴∠ABE=∠ADG=90°,AE=AG,BE=DG,
∴∠FDG=∠FDA+∠ADG=90°+90°=180°,
∴F、D、G三点共线.
∵EF=BE+DF,
∴EF=DG+DF=GF.
∵在△AGF与△AEF中,
AG=AE
GF=EF
AF=AF

∴△AGF≌△AEF(SSS),
∴∠GAF=∠EAF,∠1=∠2,
∵∠GAF+∠EAF=∠EAG=90°,
∴∠EAF=
1
2
×90°=45°,故③正确;
∵∠1=∠2,AD⊥FG于D,AH⊥EF于H,
∴AD=AH,
∵AD=AB,
∴AH=AB,
又∵AH⊥EF于H,AB⊥BC于B,
∴AE平分∠BEF,故①正确;
∵AE平分∠BEF,
∴∠AEB=∠AEH,
∵∠AEB+∠BAE=90°,∠AEH+∠HAE=90°,
∴∠BAE=∠HAE,
又∵EH⊥AH于H,EB⊥AB于B,
∴BE=HE,
∵BE=DG,
∴HE=DG,
∵EF=HE+FH,GF=DG+FD,EF=GF,
∴FH=FD,故②正确;
∵△AEF≌△AGF,
∴S△EAF=S△GAF
∵△ABE≌△ADG,
∴S△GAF=S△ADG+S△ADFS△ABE+S△ADF
∴S△EAF=S△ABE+S△ADF,故④正确;
∵EF=HE+FH,BE=HE,FH=FD,
∴EF=BE+FD,
∴△CEF的周长=EF+EC+CF=BE+FD+EC+CF=BC+CD=2AB=2,故⑤正确.
故选D.
点评:本题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,角平分线的判定与性质,三角形的周长与面积,综合性较强,难度适中,根据旋转的性质作出辅助线是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图:在正方形网格上有△ABC,△DEF,说明这两个三角形相似,并求出它们的相似比.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线精英家教网,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度;
(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,在Rt△ABC中,∠BAC=90°,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.
(1)求证:AF=BF;
(2)如果AB=AC,求证:四边形AFCG是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•陕西)如图,正三角形ABC的边长为3+
3

(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
2
,求另一直角边BC的长.

查看答案和解析>>

同步练习册答案