精英家教网 > 初中数学 > 题目详情
如图,将△ABC放在平面直角坐标系中,使B、C在X轴正半轴上,若AB=AC.且A点坐标为(3,2),B点坐标为(1,0).
(1)求边AC所在直线的解析式;
(2)若坐标平面内存在三角形与△ABC全等且有一条公共边,请写出这些三角形未知顶点的坐标.
(1)设C点的坐标为(x,0).
∵AB=AC,
∴点A在BC的垂直平分线上,
又∵A点坐标为(3,2),B点坐标为(1,0),
1+x
2
=3,
∴x=5,即C点的坐标为(5,0).
设边AC所在直线的解析式为y=kx+b,则
3k+b=2
5k+b=0

解得
k=-1
b=5

故边AC所在直线的解析式y=-x+5;

(2)∵A点坐标为(3,2),B点坐标为(1,0),C点的坐标为(5,0),
∴AB=AC=2
2
,BC=4,
∴AB2+AC2=BC2
∴△ABC为等腰直角三角形.
如图所示,符合要求的点有:
C1(-1,2),C2(1,4),C3(5,4),C4(7,2),C5(3,-2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.
(1)求甲组加工零件的数量y与时间x之间的函数关系式.
(2)求乙组加工零件总量a的值.
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△OAB中,∠A=90°,∠ABO=30°,OB=
8
3
3
,边AB的垂直平分线CD分别与AB、x轴、y轴交于点C、G、D.
(1)求点G的坐标;
(2)求直线CD的解析式;
(3)在直线CD上和平面内是否分别存在点Q、P,使得以O、D、P、Q为顶点的四边形是菱形?若存在,求出点Q得坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形OABC边长为2,O是直角坐标系的原点,点A,C分别在x轴,y轴上.点P沿着正方形的边,按O→A→B的顺序运动,设点P经过的路程为x,△OPB的面积为y.
(1)求出y与x之间的函数关系式,写出自变量x的取值范围;
(2)探索:当y=
1
4
时,点P的坐标;
(3)是否存在经过点(0,-1)的直线平分正方形OABC的面积?如果存在,求出这条直线的解析式;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知,如图点A(1,1),B(2,-3),点P为x轴上一点,当|PA-PB|最大时,点P的坐标为(  )
A.(
1
2
,0)
B.(
5
4
,0)
C.(-
1
2
,0)
D.(1,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

A、B两地相距300千米,甲、乙两辆火车分别从A、B两地同时出发,相向而行,如图,l1,l2分别表示两辆火车离A地的距离s(千米)与行驶时间t(时)的关系.
(1)l1表示哪辆火车离A地的距离与行驶时间的关系?
(2)1小时后,两车相距多少千米?
(3)求出l1,l2分别表示的两辆火车的s与t的函数关系式.
(4)行驶多长时间后,甲、乙两车相遇?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,函数y=x的图象l是第一、三象限的角平分线.
(1)实验与探究:由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出它们的坐标:B′______、C′______;
(2)归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线l的对称点P′的坐标为______;
(3)类比与猜想:坐标平面内任一点P(m,n)关于第二、四象限的角平分线的对称点P′的坐标为______;
(4)运用与拓广:已知两点D(0,-3)、E(-1,-4),试在第一、三象限的角平分线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=mx+2m+8与x轴、y轴交于点A、B,若图象经过点C(2,4).
(1)求一次函数的解析式;
(2)过点C作x轴的平行线,交y轴于点D,在△OAB边上找一点E,使得△DCE构成等腰三角形,求点E的坐标;
(3)点F是线段OB(不与点O、点B重合)上一动点,在线段OF的右侧作正方形OFGH,连接AG、BG,设线段OF=t,△AGB的面积为S,求S与t的函数关系式,并写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在购买某场篮球赛门票时,设购买门票张数为x(张),总费用为y(元).
方案一:若单位赞助广告费10000元,则该单位所购门票价格为每张60元.(总费用=赞助广告费+总门票费)
方案二:购买门票的方式如图所示.
解答下列问题:
(1)请分别求出方案二中当0≤x≤100时和当x>100时,y与x的函数关系式;
(2)若购买本场篮球赛门票是300张,你将选择哪一种方案?请说明理由;
(3)若甲、乙两个单位分别采用方案一、方案二购买本场篮球赛门票共700张,花去总费用共58000元,求甲、乙两个单位各购买门票多少张?

查看答案和解析>>

同步练习册答案