分析 (1)根据平面镜反射光线的规律得∠1=∠4=50°,再利用平角的定义得∠5=80°,然后利用平行线的性质计算出∠2=100°,则∠6=40°,再利用三角形内角和定理计算∠3;
(2)运用同样的方法进行解答即可;
(3)当∠3=90°时,根据三角形内角和定理得∠4+∠6=90°,则2∠4+2∠6=180°,利用平角的定义得到∠2+∠5=180°,然后根据平行线的判定得到m∥n;
(4)由(1)可得,∠5=180°-2∠2,∠6=180°-2∠3,再根据∠2+∠3=180°-∠α,即可得出∠β=180°-∠5-∠6=2(∠2+∠3)-180°=2(180°-∠α)-180°=180°-2∠α.
解答
解:(1)∵∠1=∠4=50°,
∴∠5=180°-2×50°=80°,
∵m∥n,
∴∠2+∠5=180°,
∴∠2=100°,
∴∠6=$\frac{1}{2}$(180°-∠2)=40°,
∴∠3=180°-∠4-∠6=90°;
故答案为:100°,90°;
(2)同样的方法,可得当∠1=55°,∠3=90°;当∠1=40°,∠3=90°;
故答案为:90°,90°;
(3)当∠3=90°时,m∥n.
理由如下:
∵∠3=90°,
∴∠4+∠6=90°,
∴2∠4+2∠6=180°,
∴∠2+∠5=180°,![]()
∴m∥n;
故答案为:90°;
(4)①如图3,由(1)可得,∠5=180°-2∠2,∠6=180°-2∠3,
∵∠2+∠3=180°-∠α,
∴∠β=180°-∠5-∠6=2(∠2+∠3)-180°=2(180°-∠α)-180°=180°-2∠α,
∴α与β的数量关系为:2α+β=180°,
故答案为:2α+β=180°.
点评 本题考查了平行线的判定与性质以及三角形内角和定理,解题时注意:同旁内角互补,两直线平行;两直线平行,同旁内角互补.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 5$\sqrt{6}$ | B. | 10 | C. | 4$\sqrt{3}$ | D. | 7.5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x=0 | B. | y2-2y-1=0 | C. | $\frac{1}{3}$x-$\frac{3}{x}$=2 | D. | 2x+3y=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com