精英家教网 > 初中数学 > 题目详情
在东西方向的海岸线L上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距8
3
km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由;
(3)根据(2)的探究过程,请求出要使从B出发的轮船靠岸,那么轮船的航线y=kx+b的k的取值范围?(直接写出答案)
(1)∵∠BAD=30°,∠DAC=60°,
∴∠BAC=90°,
∴在Rt△BAC中,BC2=AB2+AC2=402+(8
3
2=1792,
∴BC=16
7

∴轮船的航行速度为
16
7
4
3
=12
7
(km/h);

(2)以正东方向所在直线为横轴,以正北方向所在直线为纵轴,点A为坐标原点,建立平面直角坐标系.作BE⊥x轴于E,则在直角△ABE中,AB=40km,∠BEA=90°,
则AE=AB•cos60°=20,BE=AB•sin60°=20
3

则B的坐标是:(-20,20
3
),
由题意可得出:AC=8
3
km,∠ACM=30°,
∴C点纵坐标为:4
3
,横坐标为:
(8
3
)2-(4
3
)2
=12,
∴C的坐标是:(12,4
3
),
设直线BC的解析式是y=kx+b,
-20k+b=20
3
12k+b=4
3
,解得:
k=-
3
2
b=10
3

则直线BC的解析式为y=-
3
2
x+10
3

令y=0,则x=20,而AM=19.5,
∴20.5>20>19.5
∴轮船可以行至码头MN靠岸.…(4分)

(3)M的坐标是(19.5,0),设直线BM的解析式是y=kx+b
-20k+b=20
3
19.5k+b=0

解得:
k=-
40
3
79
b=
1560
3
79

N的坐标是(20.5,0),设直线BN的解析式是:y═kx+b,
-20k+b=20
3
20.5k+b=0

解得:
k=-
40
3
81
b=
820
3
81

则-
40
3
79
≤k≤-
40
3
81
…(3分).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

2010年我国西南地区遭受了百年一遇的旱灾,但在这次旱情中,某市因近年来“森林城市”的建设而受灾较轻.据统计,该市2009年全年植树5亿棵,涵养水源3亿立方米,若该市以后每年年均植树5亿棵,到2015年“森林城市”的建设将全面完成,那时,树木可以长期保持涵养水源确保11亿立方米.
(1)从2009年到2015年这七年时间里,该市一共植树多少亿棵?
(2)若把2009年作为第1年,设树木涵养水源的能力y(亿立方米)与第x年成一次函数,求出该函数的解析式,并求出到第3年(即2011年)可以涵养多少水源?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,直线l是一次函数y=kx+b的图象.
(1)求k、b的值;
(2)当x=2时,求y的值;
(3)当y=4时,求x的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

星期天,数学张老师提着篮子(篮子重0.5斤)去集市买10斤鸡蛋,当张老师往篮子里拾称好的鸡蛋时,发觉比过去买10斤鸡蛋时个数少很多,于是她将鸡蛋装进篮子再让摊主一起称,共称得10.55斤,即刻她要求摊主退1斤鸡蛋的钱,她是怎样知道摊主少称了大约一斤鸡蛋呢(精确到1斤)?请你将分析过程写出来.由此你受到什么启发?(请用一至两句话,简要叙述出来).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

拖拉机开始工作时,油箱中有油24升,如果每小时耗油4升,那么油箱中剩油量y(升)与工作时间x(小时)之间的函数关系式和图象是(  )
A.
y=4x-24(0≤x≤6)
B.
y=-24+4x(x≥0)
C.
y=24-4x
D.
y=24-4x(0≤x≤6)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,直线y=x+1与y轴交于点A1,以OA1为边作正方形OA1B1C1,然后延长C1B1与直线y=x+1交于点A2,得到第一个梯形A1OC1A2;再以C1A2为边作正方形C1A2B2C2,同样延长C2B2与直线y=x+1交于点A3得到第二个梯形A2C1C2A3;再以C2A3为边作正方形C2A3B3C3,延长C3B3,得到第三个梯形;…则第2个梯形A2C1C2A3的面积是______;第n(n是正整数)个梯形的面积是______(用含n的式子表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x(度)与应付电费y(元)的关系如图所示.
(1)根据图象,请分别求出当0≤x≤50和x>50时,y与x的函数关系式;
(2)请回答:当每月用电量不超过50度时,收费标准是______;
当每月用电量超过50度时,收费标准是______.

查看答案和解析>>

同步练习册答案