分析 (1)根据待定系数法,可得函数解析式;
(2)根据三角形的面积公式,可得函数解析式;
(3)根据反证法,可得关于x的方程,根据根的判别式,可得答案.
解答 解:(1)设BC的函数解析式为y=kx+b,
将B、C点坐标代入,得
$\left\{\begin{array}{l}{6k+b=0}\\{b=6}\end{array}\right.$.
解得$\left\{\begin{array}{l}{k=-1}\\{b=6}\end{array}\right.$,
BC的函数解析式为y=-x+6,
(2)设P(x,-x+6),由三角形的面积公式,得
S=$\frac{1}{2}$×4×(-x+6),
化简,得
y=-2x+12(0≤x<6);
(3)不存在这样的点P,使得PO=AO,理由如下:
假设存在P使得PO=AO,平方,得PO2=AO2,
即x2+(-x+6)2=42,
化简,得
x2-6x+10=0.
△=(-6)2-4×10=-4<0,
不存在实数x,即不存在P点.
点评 本题考查了一次函数综合题,(1)利用了待定系数法求函数解析式,(2)利用了三角形的面积公式得出函数解析式;(3)利用了反证法,根据的判别式是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\sqrt{(-2)^{2}}$=-2 | B. | ±$\sqrt{9}$=3 | C. | $\sqrt{{2}^{2}}$=2 | D. | $\sqrt{16}$=8 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 折线统计图 | B. | 条形统计图 | C. | 扇形统计图 | D. | 不确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com