精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在Y轴,X轴上,以AB为弦的⊙M与X轴相切,若点A的坐标为(0,8),则圆心M的坐标为(   )

A.(4,-5)       B.(5,-4)    C.(-5,4)    D.(-4,5)
D.

试题分析:过点M作MD⊥AB于D,交OC于点E.连接AM,设⊙M的半径为R.
∵以边AB为弦的⊙M与x轴相切,AB∥OC,
∴DE⊥CO,
∴DE是⊙M直径的一部分;
∵四边形OABC为正方形,顶点A,C在坐标轴上,点A的坐标为(0,8),
∴OA=AB=CB=OC=8,DM=8-R;
∴AD=BD=4(垂径定理);
在Rt△ADM中,
根据勾股定理可得AM2=DM2+AD2
∴R2=(8-R)2+42,∴R=5.
∴M(-4,5).
故选D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.
(1)证明△COF是等腰三角形,并求出CF的长;
(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB经过⊙O上的点C,且OA=OB,CA=CB,⊙O分别与OA、OB的交点D、E恰好是OA、OB的中点,EF切⊙O于点E,交AB于点F.
(1)求证:AB是⊙O的切线;
(2)若∠A=30°,⊙O的半径为2,求DF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,AD=4,DC=3,将△ADC绕点A按逆时针方向旋转到△AEF(点A、B、E在同一直线上),则AC在运动过程中所扫过的面积为       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ACB=90°,AC="4" cm ,BC="3" cm,⊙O为△ABC的内切圆.
(1)求⊙O的半径;
(2)点P从点B沿边BA向点A以点1cm/s 的速度匀速运动,以点P为圆心,PB长为半径作圆.设点P运动的时间为 t s.若⊙P与⊙O相切,求t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是(  )
A.两个外离的圆B.两个外切的圆
C.两个相交的圆D.两个内切的圆

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知半径为1的圆的圆心为M(0,1),点B(0,2),A是x轴负半轴上的一点,D是OA的中点,AB交⊙M于点C.若四边形BCDM为平行四边形,则sin∠ABD=     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为     

查看答案和解析>>

同步练习册答案