精英家教网 > 初中数学 > 题目详情
已知,如图,在梯形ABCD中,AD∥BC,DA=DC,以点D为圆心,DA长为半径的⊙D与AB相切于A,与BC交于点F,过点D作DE⊥BC,垂足为E。
(1)求证:四边形ABED为矩形;
(2)若AB=4,,求CF的长。
解:(1)∵⊙D与AB相切于点A,
∴AB⊥AD,
∵AD∥BC,DE⊥BC,
∴DE⊥AD,
∴∠DAB=∠ADE=∠DEB=90°,
∴四边形ABED为矩形;
(2)∵四边形ABED为矩形,
∴DE=AB=4,
∵DC=DA,
∴点C在⊙D上,
∵D为圆心,DE⊥BC,
∴CF=2EC,

设AD=3k(k>0)则BC=4k,
∴BE=3k,EC=BC-BE=4k-3k=k,DC=AD=3k,
由勾股定理得DE2+EC2=DC2
即42+k2=(3k)2
∴k2=2,
∵k>0,
∴k=
∴CF=2EC=2
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB=DC,∠D=120°,对角线CA平分∠BCD,且梯形的周长为20,求AC的长及梯形面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,∠B=45°,∠BAC=105°,AD=CD=4,
求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AB∥CD,AC⊥BC,AC平分∠DAB,点E为AC的中点.求证:DE=
12
BC

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•闵行区二模)已知:如图,在梯形ABCD中,AD∥BC,AB=CD,BC=2AD.DE⊥BC,垂足为点F,且F是DE的中点,联结AE,交边BC于点G.
(1)求证:四边形ABGD是平行四边形;
(2)如果AD=
2
AB
,求证:四边形DGEC是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在梯形ABCD中,AD∥BC,CD=10cm,∠B=45度,∠C=30度,AD=5cm.
    求:(1)AB的长;
        (2)梯形ABCD的面积.

查看答案和解析>>

同步练习册答案