证明:S
△AOM=AO×OM×sinAOM÷2=AM×hAB÷2,
S
△BOM=BO×OM×sinBOM÷2=BM×hAB÷2,
且M为A、B的中点,故AM=BM.
∴S
△AOM=S
△BOM,
∴AO×sinAOM=BO×sinBOM,
∴AO:BO=sinBOM:sinAOM…1
∵S
△COQ=OC×OQ×sinCOQ÷2=CQ×hDC÷2…2
S
△DOQ=DC×OQ×sinDOQ÷2=DQ×hDC÷2…3
且∠AOM=∠COQ,∠BOM=∠DOQ,
故S
△COQ=OC×OQ×sinAOM÷2,S
△DOQ=DC×OQ×sinBOQ÷2,
S
△COQ:S
△DOQ=OC×sinAOM:(OD×sinBOM),
将1式代入上式得S
△COQ:S
△DOQ=OC×OB:(OD×OA),
将2式÷3式亦可得:S
△COQ:S
△DOQ=CQ:DQ,
∴

=

,
∵

=

÷

,
且∠BOC=∠AOD,
∴

.
分析:因为

=

÷

,且∠BOC=∠AOD.
所以要证

,
须证

=

.
根据面积来证即可.
点评:本题用到的知识点为三角形的面积=任意两边的积×夹角的正弦值÷2,等底同高的两个三角形的面积相等.