精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.

下列结论:
①△ABG≌△AFG;  ②BG=GC;  ③AG∥CF;  ④S△FGC=3.
其中正确结论的个数是


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
C
对折可得:DE="EF" ,AF="AD" ,AF⊥EF , △ADE≌△AFE
①在Rt△ABG与Rt△AFG中,AB="AF" ,AG=AG,所以,Rt△ABG≌Rt△AFG①正确。②Rt△ABG≌Rt△AFG可得:BG="FG" ,∠AGB=∠AGF设BG="x" 则,CG="BC-BG" = 6-xGE=GF+EF=BG+DE=x+2在Rt△ECG中,有CG^2+CE^2="EG^2CG=6-x" , CE="4" ,EG=x+2可得:(6-x)^2 + 4^2 = (x+2)^2解得:x=3所以,BG=GF=CG=3  结论②正确。③因为,CG=GF所以,∠CFG = ∠FCG因为,∠BGF=∠CFG+∠FCG(三角形的外角等于不相邻的两个内角和)又∠BGF=∠AGB+∠AGF可得:∠CFG+∠FCG = ∠AGB+∠AGF因为,∠AGB=∠AGF,∠CFG = ∠FCG所以,2∠AGB=2∠FCG即,∠AGB=∠FCG所以,AG//CF结论③正确。
④∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;∴BG="FG∵EF=DE=" CD=2,设BG=FG=x,则CG=6-x.
在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=3.所以BG=3=6-3=GC过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴FH/GC="EF/EG" ,EF=DE=2,GF=3,∴EG=5,∴FH/GC="EF/EG=2/5" ,∴S△FCG="S△GCE-S△FEC=" 1/2×3×4-1/2 ×4×(2/5 ×3)=18/5结论④错误。故选C
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案