精英家教网 > 初中数学 > 题目详情

【题目】平面内的两条直线有相交和平行两种位置关系
(1)已知AB平行于CD,如a图,当点P在AB、CD外部时,∠BPD+∠D=∠B即∠BPD=∠B﹣∠D,为什么?请说明理由.如b图,将点P移动到AB、CD内部,以上结论是否仍然成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明结论;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.

【答案】
(1)解:①∵AB∥CD,

∴∠B=∠COP,

∵∠COP=∠BPD+∠D,

∴∠B=∠BPD+∠D,

即:∠BPD=∠B﹣∠D,

②不成立,

结论:∠BPD=∠B+∠D,

理由:如图b,

过点P作PG∥AB,

∴∠B=∠BPG,

∵PG∥AB,CD∥AB,

∴PG∥CD,

∴∠DPG=∠D,

∴∠BPD=∠BPG+∠DPG=∠B+∠D


(2)解:结论:∠DPQ=∠B+∠BQD+∠D,

理由:如图c,

连接QP并延长,

∵∠BP∠G是△BPQ的外角,

∴∠BPG=∠B+∠BQP,

同理:∠DPG=∠D+∠DQP,

∴∠BPD=∠BPG+∠DPG=∠B+∠BQP+∠DQP+∠D=∠B+∠BQD+∠D


(3)解:如图d,

∵∠DHM是△BFH的外角,

∴∠DHM=∠B+∠F,

同理:∠CMH=∠A+∠E,

∴∠A+∠B+∠C+∠D+∠E+∠F=∠DHM+∠CMH+∠C+∠D=360°


【解析】(1)①利用平行线的性质和三角形的外角即可;②利用平行线的特点作出平行线,再利用平行线的性质即可;(2)利用三角形的外角等于与它不相邻的两内角的和即可;(3)利用三角形的外角的性质把角转化到四边形CDHM中,用四边形的内角和即可.
【考点精析】掌握平行线的性质和旋转的性质是解答本题的根本,需要知道两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一次函数y=﹣2x+3中,y的值随x值增大而__.(填增大减小”)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运动属于平移的是(  )

A. 空中放飞的风筝

B. 飞机的机身在跑道上滑行至停止

C. 运动员投出的篮球

D. 乒乓球比赛中高抛发球后,乒乓球的运动方式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方程x2+x=0的根为(
A.x=﹣1
B.x=0
C.x1=0,x2=﹣1
D.x1=0,x2=1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各数中,绝对值最小的数是(

A. 0 B. 1 C. -3 D. ±1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1 , 再将点P1绕原点旋转90°得到点P2 , 则点P2的坐标是(
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+2分别与xy轴交于点BA,与反比例函数的图象分别交于点CDCEx轴于点EOE=2.

(1)求反比例函数的解析式;

(2)连接OD,求△OBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,AB=3 cm,BC=5 cm,那么当DC=______,AD=______时,四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:
(1)找出直线DC,AC被直线BE所截形成的同旁内角.
(2)指出∠DEF与∠CFE是由哪两条直线被哪一条直线所截形成的什么角.
(3)试找出图中与∠DAC是同位角的所有角.

查看答案和解析>>

同步练习册答案