精英家教网 > 初中数学 > 题目详情

【题目】在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如图所示.

(1)请画出这个几何体的三视图.

(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 个正方体只有一个面是黄色,有 个正方体只有两个面是黄色,有 个正方体只有三个面是黄色.

(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?

【答案】121个;2个;3个;34个

【解析】

试题分析:(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1.据此可画出图形;

(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个;有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个;

(3)保持俯视图和左视图不变,可往第二列前面的几何体上放一个小正方体,后面的几何体上放3个小正方体.

解:(1)如图所示:

(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个,共1个;有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个,共2个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个,共3个;

(3)最多可以再添加4个小正方体.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】

1OA= cmOB= cm

2)若点C是线段AO上一点,且满足AC=CO+CB,求CO的长.

3)若动点PQ分别从AB同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s,设运动时间为ts),当点P与点Q重合时,PQ两点停止运动.

t为何值时,2OP﹣OQ=8

当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以同样的速度向点P运动,遇到点P后立即返回,又以同样的速度向点Q运动,如此往返,直到点PQ停止时,点M也停止运动.在此过程中,点M行驶的总路程为 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知RtABC中,C=90°B=30°,O为AB边中点,将ABC绕点O逆时针旋转60°至EDA位置,连接CD.

(1)求证:ODBC

(2)求证:四边形AODC为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCABC=90°,利用直尺和圆规,根据要求作图(不写作法,保留作图痕迹),并解决下面的问题.

1)作AC的垂直平分线,分别交ACBC于点DE

2)若AB=12BE=5,求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一张长方形纸片,剪下一个正方形,剩下一个长方形,称为第一次操作;在剩下的长方形纸片中再剪下一个正方形,剩下一个长方形,称为第二次操作;…;若在第n次操作后,剩下的长方形为正方形,则称原长方形为n阶奇异长方形.如图1,长方形ABCD中,若AB=2,BC=6,则称长方形ABCD为2阶奇异长方形.

(1)判断与操作:

如图2,长方形ABCD长为10,宽为4,它是奇异长方形,请写出它是 阶奇异长方形,并在图中画出裁剪线;

(2)探究与计算:

已知长方形ABCD的一边长为30,另一边长为a (a<30),且它是3阶奇异长方形,请画出所有可能的长方形ABCD及裁剪线的示意图,并求出相应的a值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解中学生获取资讯的主要渠道,设置“A:手机,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,则该调查的方式是_______.(填普查或抽样调查)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l上有一点O,点A、B同时从O出发,在直线l上分别向左、向右作匀速运动,且A、B的速度比为1:2,设运动时间为ts.

(1)当t=2s时,AB=12cm.此时,

①在直线l上画出A、B两点运动2秒时的位置,并回答点A运动的速度是 cm/s; 点B运动的速度是 cm/s.

②若点P为直线l上一点,且PA﹣PB=OP,求的值;

(2)在(1)的条件下,若A、B同时按原速向左运动,再经过几秒,OA=2OB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.

(1)求证:ADF≌△CEF

(2)试证明DFE是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】136﹣76+﹣23﹣105

2

3

4

5

6

查看答案和解析>>

同步练习册答案