精英家教网 > 初中数学 > 题目详情

等边△ABC的三条内角平分线交于点O,则△ABC绕点O至少旋转________度,就能和原来的三角形重合.

120
分析:根据等边三角形的性质,可以知道旋转角度应该等于120°.
解答:等边△ABC的三条内角平分线交于点O,至少旋转120度能与其本身重合.
故答案为:120.
点评:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

22、阅读下面材料,并解决问题:
(1)如图(1),等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,则∠APB=
150°
,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌
△ABP
这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(2),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•海淀区一模)问题:如图1,a、b、c、d是同一平面内的一组等距平行线(相邻平行线间的距离为1).画出一个正方形ABCD,使它的顶点A、B、C、D分别在直线a、b、d、c上,并计算它的边长.

小明的思考过程:
他利用图1中的等距平行线构造了3×3的正方形网格,得到了辅助正方形EFGH,如图2所示,再分别找到它的四条边的三等分点A、B、C、D,就可以画出一个满足题目要求的正方形.
请回答:图2中正方形ABCD的边长为
5
5

请参考小明的方法,解决下列问题:
(1)请在图3的菱形网格(最小的菱形有一个内角为60°,边长为1)中,画出一个等边△ABC,使它的顶点A、B、C落在格点上,且分别在直线a、b、c上;
(3)如图4,l1、l2、l3是同一平面内的三条平行线,l1、l2之间的距离是
21
5
,l2、l3之间的距离是
21
10
,等边△ABC的三个顶点分别在l1、l2、l3上,直接写出△ABC的边长.

查看答案和解析>>

科目:初中数学 来源:轻松练习30分(测试卷) 初三几何上册 题型:013

等边△ABC的边长为1,三条中线交于O,以O为圆心,为半径作圆,则点A与⊙O的位置关系是

[  ]

A.在⊙O内
B.在⊙O上
C.在⊙O外
D.无法确定

查看答案和解析>>

科目:初中数学 来源:2011—2012学年安徽全椒八年级下第三次月考数学试卷(带解析) 题型:解答题

阅读下面材料,并解决问题:
(1)如下图1,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5则∠APB=______,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌_______这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.
(2)请你利用第(1)题的解答思想方法,解答下面问题:已知:如图2,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.

查看答案和解析>>

科目:初中数学 来源:2013届安徽全椒八年级下第三次月考数学试卷(解析版) 题型:解答题

阅读下面材料,并解决问题:

(1)如下图1,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5则∠APB=______,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌_______这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.

(2)请你利用第(1)题的解答思想方法,解答下面问题:已知:如图2,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.

 

查看答案和解析>>

同步练习册答案