精英家教网 > 初中数学 > 题目详情

已知⊙O的半径为5,由直径AB的端点B作⊙O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为________,此函数的最大值是________,最小值是________.

AP+2PM=x+=-+20,(0<x<10)        不存在
分析:先连接BP,AB是直径,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,
于是PM:PB=PB:AB,可求PM==,从而有AP+2PM=x+=-x2+x+20(0<x<10),再根据二次函数的性质,可求函数的最大值.
解答:解:如图所示,连接PB,
∵∠PBM=∠BAP,∠BMP=∠APB=90°,
∴△PMB∽△PAB,
∴PM:PB=PB:AB,
∴PM==
∴AP+2PM=x+=-x2+x+20(0<x<10),
∵a=-<0,
∴AP+2PM有最大值,没有最小值,
∴y最大值==
故答案为:AP+2PM=x+=-x2+x+20(0<x<10),,不存在.
点评:本题考查了相似三角形的判定和性质、圆中直径所对的圆周角等于90°、求二次函数的最大值、弦切角定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、已知⊙O1的半径为3,⊙O2的半径为2,若⊙O1与⊙O2相切,则O1,O2的距离为
5或1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O的半径为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优弧
AB
上的一个动点(不与精英家教网点A、点B重合).连接AC、BC,分别与⊙M相交于点D、点E,连接DE.若AB=2
3

(1)求∠C的度数;
(2)求DE的长;
(3)如果记tan∠ABC=y,
AD
DC
=x(0<x<3),那么在点C的运动过程中,试用含x的代数式表示y.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知⊙O的半径为4,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为(  )
A、在圆上B、在圆外C、在圆内D、不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

已知球的半径为R=0.53,根据球的体积公式V=
43
πR3
,求球体的体积(π取3.14,保留两个有效数字)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知圆的半径为4cm,直线和圆相离,则圆心到直线的距离d的取值范围是
d>4cm
d>4cm

查看答案和解析>>

同步练习册答案