精英家教网 > 初中数学 > 题目详情
如果2x=
4
3
与3(x+a)=a-5x的解相同,那么a=
-
8
3
-
8
3
分析:首先计算出方程2x=
4
3
的解,再把x的值代入方程3(x+a)=a-5x,解出a即可.
解答:解:2x=
4
3

解得:x=
2
3

把x=
2
3
代入3(x+a)=a-5x中得:
3(
2
3
+a)=a-5×
2
3

解得:a=-
8
3

故答案为:-
8
3
点评:此题主要考查了同解方程,如果两个方程的解相同,那么这两个方程叫做同解方程.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读并解答:
①方程x2-2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.
②方程2x2-x-2=0的根是x1=
1+
17
4
,x2=
1-
17
4
,则有x1+x2=
1
2
,x1x2=-1.
③方程3x2+4x-7=0的根是x1=-
7
3
,x2=1,则有x1+x2=-
4
3
,x1x2=-
7
3

(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;
(2)利用你的猜想结论,解决下面的问题:
已知关于x的方程x2+(2k+1)x+k2-2=0有实数根x1,x2,且x12+x22=11,求k的值.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书九年级数学上 题型:044

矩形仓库的多种设计方案

  实践与探索课上,老师布置了这样一道题:

  有100米长的篱笆材料,想围成一矩形露天仓库,要求面积不小于600平方米,在场地的北面有一堵长50米的旧墙.有人用这个篱笆围一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求.现在请你设计矩形仓库的长和宽,使它符合要求.

  经过同学们一天的实践与思考,老师收到了如下几种设计方案:

  (1)如果设矩形的宽为x米,则用于长的篱笆为=(50-x)米,这时面积S=x(50-x)

  当S=600时,由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.

  检验后知x=20符合要求.

  (2)根据在周长相等的条件下,正方形面积大于矩形面积,所以设计成正方形仓库,它的边长为x米,则4x=100,x=25.这时面积达到625米,当然符合要求.

  (3)如果利用场地北面的那堵旧墙,取矩形的长与旧墙平行,设与墙垂直的矩形一边长为x米,则另一边为100-2x,如图.

  因为旧墙长50米,所以100-2x≤50.即x≥25米.若S=600平方米,则由x(100-2x)=600,即x2-50x+300=0,解得x1=25+5,x2=25-5.根据x≥25,舍去x2=25-5

  所以,利用旧墙,取矩形垂直于旧墙一边长为25+5米(约43米),另一边长约14米,符合要求.

  (4)如果充分利用北面旧墙,即矩形一边是50米旧墙时,用100米篱笆围成矩形仓库,则矩形另一边长为25米,这时矩形面积为S=50×25=1250(平方米).即面积可达1250平方米,符合设计要求.

还可以有其他一些符合要求的设计方案.请你试试看.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果2x=
4
3
与3(x+a)=a-5x的解相同,那么a=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读并
①方程x2-2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.
②方程2x2-x-2=0的根是x1=
1+
17
4
,x2=
1-
17
4
,则有x1+x2=
1
2
,x1x2=-1.
③方程3x2+4x-7=0的根是x1=-
7
3
,x2=1,则有x1+x2=-
4
3
,x1x2=-
7
3

(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;
(2)利用你的猜想结论,解决下面的问题:
已知关于x的方程x2+(2k+1)x+k2-2=0有实数根x1,x2,且x12+x22=11,求k的值.

查看答案和解析>>

同步练习册答案