A
分析:连接OA,OB根据切线的性质定理,切线垂直于过切点的半径,即可求得∠OAP,∠OBP的度数,根据四边形的内角和定理即可求的∠AOB的度数,然后根据圆周角定理即可求解.
解答:∵PA是圆的切线.
∴∠OAP=90°,
同理∠OBP=90°,
根据四边形内角和定理可得:
∠AOB=360°-∠OAP-∠OBP-∠P=360°-90°-90°-80°=100°,
∴∠C=
∠AOB=50°.
故选A.
点评:本题主要考查了切线的性质、四边形的内角和以及圆周角定理,正确求得∠AOB的度数,是解决本题的关键.