精英家教网 > 初中数学 > 题目详情

探索题:

我们知道,2条直线相交只有一个交点,3条直线两两相交最多能有3个交点,4条直线两两相交最多能有6个交点,5条直线两两相交最多能有10个交点,6条直线两两相交最多能有15个交点……,n条直线呢?

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为了探索代数式
x2+1
+
(8-x)2+25
的最小值,
小张巧妙的运用了数学思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则AC=
x2+1
,CE=
(8-x)2+25
 则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于
10
10
,此时x=
4
3
4
3

(2)题中“小张巧妙的运用了数学思想”是指哪种主要的数学思想?
(选填:函数思想,分类讨论思想、类比思想、数形结合思想)
(3)请你根据上述的方法和结论,试构图求出代数式
x2+4
+
(12-x)2+9
的最小值
13
13

查看答案和解析>>

科目:初中数学 来源:2013-2014学年四川省乐至县九年级上学期期末质量检测数学试卷(解析版) 题型:解答题

为了探索代数式的最小值,

小张巧妙的运用了数学思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则 则问题即转化成求AC+CE的最小值.

(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得的最小值等于       ,此时        ;

(2)题中“小张巧妙的运用了数学思想”是指哪种主要的数学思想?

(选填:函数思想,分类讨论思想、类比思想、数形结合思想)

(3)请你根据上述的方法和结论,试构图求出代数式的最小值.

 

查看答案和解析>>

同步练习册答案