| A. | 矩形 | B. | 菱形 | C. | 正方形 | D. | 以上都不对 |
分析 因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.
解答
解:连接AC、BD,
在△ABD中,
∵AH=HD,AE=EB,
∴EH=$\frac{1}{2}$BD,
同理FG=$\frac{1}{2}$BD,HG=$\frac{1}{2}$AC,EF=$\frac{1}{2}$AC,
又∵在矩形ABCD中,AC=BD,
∴EH=HG=GF=FE,
∴四边形EFGH为菱形.
故选:A.
点评 本题考查了中点四边形.菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a>b | B. | a<b | C. | a=b | D. | a=$\frac{1}{b}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| 月用水量(吨) | 小于5 | 5 | 6 | 7 | 大于7 |
| 户 数(户) | 5 | 40 | 30 | 20 | 5 |
| A. | $\frac{1}{4}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{10}$ | D. | $\frac{1}{20}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com